Lightweight Multi-Scale Convolution with Blended Feature Attention for Facial Expression Recognition in the Wild

计算机科学 特征(语言学) 卷积(计算机科学) 比例(比率) 表达式(计算机科学) 面部表情识别 人工智能 模式识别(心理学) 面部表情 语音识别 计算机视觉 面部识别系统 人工神经网络 程序设计语言 地图学 语言学 地理 哲学
作者
Huangshui Hu,Yu Cao,Zhijie Tang,Qingxue Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adc9d1
摘要

Abstract Facial expression recognition (FER) has achieved excellent performance in recent years under the controlled scenarios through deep learning methods. However, the accurate recognition of facial expression in the wild conditions with occlusion, pose changes, and uneven lighting still a challenging problem, not to mention the problem of limited computing resources faced by the growing size of proposed network models. To solve these problems, this paper proposes a multi-scale network based on lightweight convolution (MLC-Net), aiming to improve the recognition accuracy of FER in real-world environments while significantly reducing the number of parameters. In MLC-Net, image shallow features are extracted for global and local blocks through pre-extracted blocks. The global feature extraction block uses a mixed washing network as the basis of the Multi-scale Module, reducing the its parameters and computational complexity when extracting different levels of semantic information. Meanwhile, the improved Efficient Lightweight Channel-spatial Attention Module (ELAM) is used to enhance the feature fusion ability of the Multi-scale Module. The local feature extraction block utilizes convolutional groups and Lightweight Spatial Attention Module (LSAM) to extract and enhance local features, guiding the network to pay attention to regions with significant features, and proposes a Local Relationship Transformer (LRT), through which a multi-head attention mechanism is used to establish connections between regions, thus further enhancing the ability to recognize complex expressions. The effectiveness of the proposed MLC-Net is validated on multiple in the wild FER datasets, and the results show that MLC-Net can achieve a good balance between recognition accuracy and network lightweighting, providing a promised solution for practical application of FER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻雪枫发布了新的文献求助10
刚刚
HEIKU应助科研通管家采纳,获得10
1秒前
竹筏过海应助科研通管家采纳,获得30
1秒前
illusion2019应助科研通管家采纳,获得20
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得30
2秒前
核桃应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
hyh发布了新的文献求助10
3秒前
Moeim Keller完成签到,获得积分10
4秒前
思源应助webzhang采纳,获得10
5秒前
兰格格完成签到,获得积分10
6秒前
6秒前
6秒前
烟花应助晓晓马儿采纳,获得10
7秒前
7秒前
张黔粤zz完成签到,获得积分10
8秒前
香蕉觅云应助柒柒采纳,获得10
11秒前
11秒前
saintly919发布了新的文献求助10
11秒前
12秒前
小小苏荷发布了新的文献求助10
12秒前
13秒前
虚幻夜白应助陶醉的熊采纳,获得10
13秒前
青椒炒皮蛋完成签到,获得积分10
13秒前
切奇莉亚完成签到,获得积分10
13秒前
14秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391