Machine Learning Downscaling of CAMS Regional Air Quality Reanalyses: High-Resolution Urban Concentrations of PM2.5 and NO2 Across Europe

缩小尺度 空气质量指数 环境科学 高分辨率 质量(理念) 分辨率(逻辑) 气候学 气象学 遥感 计算机科学 人工智能 地理 地质学 降水 哲学 认识论
作者
Martin Otto Paul Ramacher,Paul Keil
标识
DOI:10.5194/egusphere-egu25-9157
摘要

High-resolution modelling of air pollutants such as NO2 and PM2.5 is an essential step in the quantification of the impacts on human health, especially in urban areas. Often, such modelling uses relatively coarse-resolution chemistry transport models (CTMs), which exhibit biases when compared to measurements and cannot consider the heterogenity of urban pollutant concentrations.This study develops a machine learning (ML) framework to downscale CAMS regional air quality reanalyses for PM2.5 and NO2 from approximately 10×10 km² (0.1 degrees) to 1×1 km² resolution, enabling more detailed urban air quality assessments across Europe.The downscaling methodology integrates meteorological, land-use, and spatial predictors to bridge the resolution gap. Key steps include: (1) interpolating CAMS outputs to a 1×1 km² grid, (2) constructing a training dataset by pairing interpolated CAMS data with ground-based measurements, (3) applying XGBoost (a gradient-boosted decision tree algorithm) and Gaussian Processes to model pollutant concentrations at 1×1 km² resolution, and (4) validating model performance using independent measurement data and FAIRMODE evaluation principles (e.g. Model Quality Objective, MQO). Predictor variables encompass meteorological inputs (e.g., daily temperature extremes, surface pressure, boundary layer height), geographical features (e.g., terrain height, proximity to roads, and coastlines), temporal indicators (e.g., year, month, date), and land-use data (e.g., Corine Land Cover and urban bounding boxes).Preliminary results demonstrate the ability of the downscaling approach to capture fine-scale spatial patterns in urban air quality for a range of cities in Europe, with improved alignment to ground-based measurements compared to CAMS reanalyses. The high-resolution (1×1 km²) predictions reveal urban-level detail, enabling better inference on pollutant distribution in urban environments. Adherence to FAIRMODE principles ensures transparency and quality of results.Future work will refine the ML framework, extend its application to other pollutants, and explore spatial and temporal scalability, ultimately aiming to deliver a transferable tool for high-resolution air quality modeling in any urban area across Europe.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHHhjl发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
回年年完成签到,获得积分10
2秒前
君君完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助50
4秒前
YY土豆侠完成签到,获得积分10
5秒前
5秒前
april666666发布了新的文献求助10
6秒前
李健应助乐观寻雪采纳,获得10
6秒前
犹豫的星星完成签到,获得积分10
6秒前
6秒前
斯文败类应助陈艳岷采纳,获得10
7秒前
9秒前
天天快乐应助wsgdhz采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
核桃应助温保禄采纳,获得30
13秒前
量子星尘发布了新的文献求助10
13秒前
彩色的访天完成签到,获得积分10
13秒前
李春普发布了新的文献求助20
13秒前
茴香完成签到,获得积分10
14秒前
yyyyyyt发布了新的文献求助10
16秒前
17秒前
科研通AI5应助泡泡采纳,获得10
17秒前
as完成签到,获得积分10
17秒前
18秒前
在逃中药完成签到,获得积分10
18秒前
茴香发布了新的文献求助10
18秒前
小小何关注了科研通微信公众号
18秒前
jason完成签到,获得积分10
18秒前
KK发布了新的文献求助10
19秒前
20秒前
浮游应助董科研严采纳,获得10
21秒前
liu完成签到,获得积分10
22秒前
22秒前
柏拉只是图完成签到,获得积分10
22秒前
一品真意完成签到,获得积分10
23秒前
Milou发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4662993
求助须知:如何正确求助?哪些是违规求助? 4045092
关于积分的说明 12512062
捐赠科研通 3737432
什么是DOI,文献DOI怎么找? 2063908
邀请新用户注册赠送积分活动 1093436
科研通“疑难数据库(出版商)”最低求助积分说明 974203