Variation in Magnetic Memory Testing Signals and Their Relationship with Stress Concentration Factors During Fatigue Tests Based on Back-Propagation Neural Networks

磁存储器 人工神经网络 压力(语言学) 压力测试(软件) 材料科学 结构工程 神经科学 心理学 复合材料 工程类 计算机科学 人工智能 语言学 哲学 程序设计语言 图层(电子)
作者
Huipeng Wang,Qiaogen Wang,Huizhong Liu
出处
期刊:Materials [MDPI AG]
卷期号:18 (5): 1008-1008
标识
DOI:10.3390/ma18051008
摘要

To investigate the relationship between metal magnetic memory testing (MMMT) signals and stress concentration factors (SCFs), four-level sinusoidal constant-amplitude load tension–tension fatigue tests were carried out on 45CrNiMoVA steel specimens with different SCFs. The normal component of MMMT signals, Hp(y), was collected during the fatigue tests, and three characteristics were extracted and analyzed during the tests, including the peak-to-peak value of abnormal peaks (ΔHp(y)), the slope coefficient of the fitting line of Hp(y) (K1), and the slope coefficient of the fitting line of Hp(y) between abnormal peaks (K2), and a back-propagation (BP) neural network was developed to differentiate the SCF of the specimens. The results showed that both fatigue load and fatigue cycle number influenced MMMT signals, and the characteristics remained stable as the fatigue cycle number increased for the same fatigue load but increased significantly as fatigue load increased. In addition, all the characteristics increased as the distance between the scan line and the center line increased, but none of them could be used to differentiate the SCF of the specimens. With properly selected input vector and hidden nodes, the established BP neural network can quantitatively recognize the SCF of specimens.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的驳发布了新的文献求助10
刚刚
情怀应助来块德芙采纳,获得10
1秒前
谨之发布了新的文献求助10
1秒前
olivia完成签到,获得积分10
2秒前
2秒前
FashionBoy应助Iridesent0v0采纳,获得10
2秒前
香蕉觅云应助牛超采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
袄猴完成签到,获得积分20
3秒前
3秒前
4秒前
小昼完成签到,获得积分10
4秒前
舒适白凡发布了新的文献求助10
4秒前
www发布了新的文献求助10
5秒前
失眠亦寒完成签到,获得积分20
6秒前
仁爱行云发布了新的文献求助10
7秒前
李爱国应助bb采纳,获得10
7秒前
8秒前
8秒前
xiaoka发布了新的文献求助10
9秒前
9秒前
千凡发布了新的文献求助10
9秒前
9秒前
King16完成签到,获得积分10
9秒前
9秒前
声声慢发布了新的文献求助10
9秒前
10秒前
zhendezy发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
伶俐如冰发布了新的文献求助10
11秒前
11秒前
明理之桃发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
大真真发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654815
求助须知:如何正确求助?哪些是违规求助? 4795608
关于积分的说明 15070611
捐赠科研通 4813367
什么是DOI,文献DOI怎么找? 2575101
邀请新用户注册赠送积分活动 1530574
关于科研通互助平台的介绍 1489178