Bridging computer and education sciences: A systematic review of automated emotion recognition in online learning environments

桥接(联网) 可解释性 计算机科学 人工智能 包裹体(矿物) 心理学 计算机网络 社会心理学
作者
Shuzhen Yu,Alexey Androsov,Hanbing Yan,Yi Chen
出处
期刊:Computers & education [Elsevier BV]
卷期号:220: 105111-105111 被引量:27
标识
DOI:10.1016/j.compedu.2024.105111
摘要

Emotions play an important role in the learning process. With intelligent technology support, identification and intervention of learners' cognition have made great achievement, but the care of emotion has been in the absence for a long time. In recent years, the use of affective computing technology to solve affective loss in online education has become a key research topic. To date, a growing number of studies have investigated automated emotion recognition (AER) in online environments. However, AER has been mainly studied from the perspective of computer science focusing on technical characteristics of developing AI technology while its pedagogical value and educational application has been overlooked. Therefore, this systematic literature review aimed to bring together educational and technical aspects of AER. Following PRISMA methodology, a comprehensive search of AER research from 2010 to 2024 in three databases (Web of Science, Science Direct and IEEE Xplore) identified 117 studies that met inclusion criteria. The articles were coded for report characteristics, educational characteristics (tech platform, pedagogy, assessment, content), technical characteristics (emotion model, emotion category, emotion measurement channel, database, algorithm model) and outcome characteristics (technical result, educational application). We found that the primary purpose of these studies was to develop and evaluate systems for AER, rather than implementing these systems in real online learning environments. Furthermore, our findings indicated a lack of integration between computer science and educational science in the realm of AER. Despite the fact that most algorithm models demonstrated high accuracy in AER, the interpretability of the results was significantly constrained by the quality of the databases used, along with the scarcity of studies focusing on the effective and real-time application of AER results. These findings provide essential guidance for shaping future research and development pathways in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研痛痛痛完成签到 ,获得积分10
2秒前
笨笨的铅笔完成签到 ,获得积分10
2秒前
小宋同学不能怂完成签到 ,获得积分10
3秒前
忐忑的书桃完成签到 ,获得积分10
3秒前
明理萃发布了新的文献求助10
3秒前
4秒前
廿三应助叶航采纳,获得10
4秒前
lll发布了新的文献求助10
4秒前
椰树椰汁发布了新的文献求助10
5秒前
张志祥完成签到 ,获得积分10
7秒前
浮游应助稽TR采纳,获得20
7秒前
8秒前
鳗鱼友灵发布了新的文献求助10
10秒前
磨人的老妖精完成签到,获得积分10
10秒前
要减肥的板凳完成签到 ,获得积分10
10秒前
struggling2026完成签到 ,获得积分10
11秒前
11秒前
Georges-09发布了新的文献求助10
12秒前
Shell完成签到,获得积分10
14秒前
Nora完成签到 ,获得积分10
15秒前
zhu完成签到,获得积分10
16秒前
16秒前
李治海完成签到,获得积分10
16秒前
我是老大应助平常的小郭采纳,获得10
17秒前
张慧杰完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
拼搏的小鱼完成签到 ,获得积分10
19秒前
Jau完成签到,获得积分0
20秒前
21秒前
77完成签到 ,获得积分10
22秒前
包容问雁发布了新的文献求助30
23秒前
YCH完成签到,获得积分10
25秒前
nene发布了新的文献求助10
25秒前
所所应助任性芾采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
BareBear应助科研通管家采纳,获得10
27秒前
jjyy应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920224
求助须知:如何正确求助?哪些是违规求助? 4191872
关于积分的说明 13019652
捐赠科研通 3962608
什么是DOI,文献DOI怎么找? 2172148
邀请新用户注册赠送积分活动 1190024
关于科研通互助平台的介绍 1098834