Bridging computer and education sciences: A systematic review of automated emotion recognition in online learning environments

桥接(联网) 可解释性 计算机科学 人工智能 包裹体(矿物) 心理学 计算机网络 社会心理学
作者
Shuzhen Yu,Alexey Androsov,Hanbing Yan,Yi Chen
出处
期刊:Computers & education [Elsevier BV]
卷期号:220: 105111-105111 被引量:5
标识
DOI:10.1016/j.compedu.2024.105111
摘要

Emotions play an important role in the learning process. With intelligent technology support, identification and intervention of learners' cognition have made great achievement, but the care of emotion has been in the absence for a long time. In recent years, the use of affective computing technology to solve affective loss in online education has become a key research topic. To date, a growing number of studies have investigated automated emotion recognition (AER) in online environments. However, AER has been mainly studied from the perspective of computer science focusing on technical characteristics of developing AI technology while its pedagogical value and educational application has been overlooked. Therefore, this systematic literature review aimed to bring together educational and technical aspects of AER. Following PRISMA methodology, a comprehensive search of AER research from 2010 to 2024 in three databases (Web of Science, Science Direct and IEEE Xplore) identified 117 studies that met inclusion criteria. The articles were coded for report characteristics, educational characteristics (tech platform, pedagogy, assessment, content), technical characteristics (emotion model, emotion category, emotion measurement channel, database, algorithm model) and outcome characteristics (technical result, educational application). We found that the primary purpose of these studies was to develop and evaluate systems for AER, rather than implementing these systems in real online learning environments. Furthermore, our findings indicated a lack of integration between computer science and educational science in the realm of AER. Despite the fact that most algorithm models demonstrated high accuracy in AER, the interpretability of the results was significantly constrained by the quality of the databases used, along with the scarcity of studies focusing on the effective and real-time application of AER results. These findings provide essential guidance for shaping future research and development pathways in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风不尽,树不静完成签到 ,获得积分10
3秒前
Yami完成签到 ,获得积分10
5秒前
eee应助steleegee采纳,获得10
5秒前
zmnzmnzmn应助雪山飞龙采纳,获得10
6秒前
背书强完成签到 ,获得积分10
6秒前
雾见春完成签到 ,获得积分10
8秒前
deniroming完成签到,获得积分10
13秒前
科研通AI5应助Kevin采纳,获得10
13秒前
天边完成签到 ,获得积分10
16秒前
forest完成签到,获得积分10
18秒前
mrwang完成签到 ,获得积分10
19秒前
聪慧语山完成签到 ,获得积分10
24秒前
zz完成签到 ,获得积分10
25秒前
向阳而生完成签到 ,获得积分10
27秒前
雪山飞龙完成签到,获得积分10
28秒前
随风完成签到 ,获得积分10
30秒前
和气生财君完成签到 ,获得积分10
33秒前
33秒前
Hastur00完成签到 ,获得积分10
35秒前
holder完成签到,获得积分10
41秒前
43秒前
48秒前
余味应助研友_Lw7OvL采纳,获得10
54秒前
善良曼寒完成签到,获得积分20
56秒前
飞云完成签到 ,获得积分10
59秒前
59秒前
huahua完成签到 ,获得积分10
1分钟前
单小芫完成签到 ,获得积分10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
yes完成签到 ,获得积分10
1分钟前
陶醉的翠霜完成签到 ,获得积分10
1分钟前
raiychemj完成签到,获得积分10
1分钟前
1分钟前
阳炎完成签到,获得积分10
1分钟前
fnunu发布了新的文献求助10
1分钟前
111完成签到 ,获得积分10
1分钟前
1分钟前
steleegee发布了新的文献求助10
1分钟前
慧喆完成签到 ,获得积分10
1分钟前
王哈哈完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321607
关于积分的说明 10206344
捐赠科研通 3036668
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797424
科研通“疑难数据库(出版商)”最低求助积分说明 757839