清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study

重症监护室 人工智能 特征(语言学) 一般化 计算机科学 机器学习 重症监护 数据挖掘 集合(抽象数据类型) 医学 重症监护医学 数学 语言学 数学分析 哲学 程序设计语言
作者
Yun Kwan Kim,Won-Doo Seo,Sun Jung Lee,Ja Hyung Koo,Gyung Chul Kim,Hee Seok Song,Minji Lee
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e62890-e62890 被引量:2
标识
DOI:10.2196/62890
摘要

Background Cardiac arrest (CA) is one of the leading causes of death among patients in the intensive care unit (ICU). Although many CA prediction models with high sensitivity have been developed to anticipate CA, their practical application has been challenging due to a lack of generalization and validation. Additionally, the heterogeneity among patients in different ICU subtypes has not been adequately addressed. Objective This study aims to propose a clinically interpretable ensemble approach for the timely and accurate prediction of CA within 24 hours, regardless of patient heterogeneity, including variations across different populations and ICU subtypes. Additionally, we conducted patient-independent evaluations to emphasize the model’s generalization performance and analyzed interpretable results that can be readily adopted by clinicians in real-time. Methods Patients were retrospectively analyzed using data from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) and the eICU-Collaborative Research Database (eICU-CRD). To address the problem of underperformance, we constructed our framework using feature sets based on vital signs, multiresolution statistical analysis, and the Gini index, with a 12-hour window to capture the unique characteristics of CA. We extracted 3 types of features from each database to compare the performance of CA prediction between high-risk patient groups from MIMIC-IV and patients without CA from eICU-CRD. After feature extraction, we developed a tabular network (TabNet) model using feature screening with cost-sensitive learning. To assess real-time CA prediction performance, we used 10-fold leave-one-patient-out cross-validation and a cross–data set method. We evaluated MIMIC-IV and eICU-CRD across different cohort populations and subtypes of ICU within each database. Finally, external validation using the eICU-CRD and MIMIC-IV databases was conducted to assess the model’s generalization ability. The decision mask of the proposed method was used to capture the interpretability of the model. Results The proposed method outperformed conventional approaches across different cohort populations in both MIMIC-IV and eICU-CRD. Additionally, it achieved higher accuracy than baseline models for various ICU subtypes within both databases. The interpretable prediction results can enhance clinicians’ understanding of CA prediction by serving as a statistical comparison between non-CA and CA groups. Next, we tested the eICU-CRD and MIMIC-IV data sets using models trained on MIMIC-IV and eICU-CRD, respectively, to evaluate generalization ability. The results demonstrated superior performance compared with baseline models. Conclusions Our novel framework for learning unique features provides stable predictive power across different ICU environments. Most of the interpretable global information reveals statistical differences between CA and non-CA groups, demonstrating its utility as an indicator for clinical decisions. Consequently, the proposed CA prediction system is a clinically validated algorithm that enables clinicians to intervene early based on CA prediction information and can be applied to clinical trials in digital health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的颤完成签到 ,获得积分10
1秒前
星际舟完成签到,获得积分10
9秒前
孳孳为善6387应助YY采纳,获得10
11秒前
练得身形似鹤形完成签到 ,获得积分10
15秒前
wushuimei完成签到 ,获得积分10
16秒前
20秒前
午后狂睡完成签到 ,获得积分10
20秒前
27秒前
nassim给walid56i的求助进行了留言
28秒前
leo完成签到 ,获得积分10
32秒前
danli完成签到 ,获得积分10
42秒前
激情的含巧完成签到,获得积分10
49秒前
爱学习的婷完成签到 ,获得积分10
51秒前
独孤完成签到 ,获得积分10
59秒前
gao完成签到 ,获得积分10
1分钟前
wp4455777完成签到,获得积分10
1分钟前
英姑应助gby2018采纳,获得10
1分钟前
帅气天荷完成签到 ,获得积分10
1分钟前
4652376完成签到 ,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
中恐完成签到,获得积分0
1分钟前
小新小新完成签到 ,获得积分10
1分钟前
大方的笑萍完成签到 ,获得积分10
1分钟前
felicity完成签到 ,获得积分10
1分钟前
student完成签到 ,获得积分10
1分钟前
LonelyCMA完成签到 ,获得积分0
1分钟前
walid56i给walid56i的求助进行了留言
1分钟前
沉静香氛完成签到 ,获得积分10
2分钟前
2分钟前
婼汐完成签到 ,获得积分10
2分钟前
2分钟前
搞怪的易槐完成签到,获得积分10
2分钟前
2分钟前
BINBIN完成签到 ,获得积分10
2分钟前
www完成签到 ,获得积分10
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
hnxxangel完成签到,获得积分10
2分钟前
ramsey33完成签到 ,获得积分10
2分钟前
科科通通完成签到,获得积分10
3分钟前
江波完成签到,获得积分20
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847837
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561714
捐赠科研通 3110924
什么是DOI,文献DOI怎么找? 1714585
邀请新用户注册赠送积分活动 825289
科研通“疑难数据库(出版商)”最低求助积分说明 775471