Large‐language‐model empowered 3D dose prediction for intensity‐modulated radiotherapy

计算机科学 放射治疗计划 直方图 放射治疗 人工智能 人工神经网络 剂量学 自动化 机器学习 医学 核医学 放射科 机械工程 工程类 图像(数学)
作者
Zehao Dong,Yixin Chen,Hiram A. Gay,Yao Hao,Geoffrey D. Hugo,Pamela Samson,Tianyu Zhao
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17416
摘要

Abstract Background Treatment planning is currently a patient specific, time‐consuming, and resource demanding task in radiotherapy. Dose‐volume histogram (DVH) prediction plays a critical role in automating this process. The geometric relationship between DVHs in radiotherapy plans and organs‐at‐risk (OAR) and planning target volume (PTV) has been well established. This study explores the potential of deep learning models for predicting DVHs using images and subsequent human intervention facilitated by a large‐language model (LLM) to enhance the planning quality. Method We propose a pipeline to convert unstructured images to a structured graph consisting of image‐patch nodes and dose nodes. A novel Dose Graph Neural Network (DoseGNN) model is developed for predicting DVHs from the structured graph. The proposed DoseGNN is enhanced with the LLM to encode massive knowledge from prescriptions and interactive instructions from clinicians. In this study, we introduced an online human‐AI collaboration (OHAC) system as a practical implementation of the concept proposed for the automation of intensity‐modulated radiotherapy (IMRT) planning. Results The proposed DoseGNN model was compared to widely employed DL models used in radiotherapy, including Swin Transformer, 3D U‐Net CNN, and vanilla MLP. For PTV, DoseGNN achieved the mean absolute error (MAE) of , , , and between true plans and predicted plans that were 64%, 53%, 64%, 61% of the best baseline model. For the worst case among OARs (left lung, right lung, chest wall, heart, spinal cord), DoseGNN achieved the mean absolute error of , , that were 85%, 91%, 80% of the best baseline model. Moreover, the LLM‐empowered DoseGNN model facilitates seamless adjustment to treatment plans through interaction with clinicians using natural language. Conclusion We developed DoseGNN, a novel deep learning model for predicting delivered radiation doses from medical images, enhanced by LLM to allow adjustment through seamless interaction with clinicians. The preliminary results confirm DoseGNN's superior accuracy in DVH prediction relative to typical DL methods, highlighting its potential to facilitate an online clinician‐AI collaboration system for streamlined treatment planning automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
科研通AI5应助爱米粒采纳,获得10
2秒前
JamesPei应助潇洒水蜜桃采纳,获得10
2秒前
传奇3应助yangsijia采纳,获得10
2秒前
平淡思雁完成签到,获得积分10
3秒前
Owen应助Seotter采纳,获得10
3秒前
知行合一完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
wuweizhizhi完成签到,获得积分10
6秒前
保持理智完成签到,获得积分10
6秒前
小石榴的爸爸完成签到 ,获得积分10
6秒前
7秒前
7秒前
alin发布了新的文献求助10
7秒前
务实的筝完成签到,获得积分10
8秒前
beenest完成签到,获得积分10
8秒前
8秒前
所所应助DrChen采纳,获得10
9秒前
无与伦比发布了新的文献求助50
9秒前
ahspark应助轩辕德地采纳,获得10
9秒前
10秒前
YAQII完成签到 ,获得积分10
10秒前
yu发布了新的文献求助200
10秒前
10秒前
xiaohu完成签到,获得积分10
10秒前
11秒前
卿欣完成签到 ,获得积分10
11秒前
12秒前
MissF发布了新的文献求助10
12秒前
12秒前
blackhawkwu完成签到,获得积分10
12秒前
小石榴爸爸完成签到 ,获得积分10
13秒前
期待未来的自己应助beenest采纳,获得10
13秒前
13秒前
wang发布了新的文献求助10
13秒前
易欣乐慰应助MMP采纳,获得30
13秒前
13秒前
xiaohu发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796325
求助须知:如何正确求助?哪些是违规求助? 3341295
关于积分的说明 10306023
捐赠科研通 3057851
什么是DOI,文献DOI怎么找? 1677972
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762775