浸出(土壤学)
柠檬酸
环境友好型
硫酸
醋酸
响应面法
烘烤
环境科学
化学
废物管理
溶解
材料科学
冶金
无机化学
工程类
有机化学
色谱法
土壤科学
土壤水分
生物
生态学
作者
Melina Roshanfar,Majid Sartaj,Siamak Kazemeini
标识
DOI:10.1016/j.jenvman.2024.121862
摘要
Efficient recycling of critical metals from spent lithium-ion batteries is vital for clean energy and sustainable industry growth. Conventional methods often fail to manage large waste volumes, leading to hazardous gas emissions and dangerous materials. This study investigates innovative methods for recovering critical metals from spent LIBs using synergistic leaching. The first step optimized thermal treatment conditions (570 °C for 2 h in air) to remove binder materials while maintaining cathode material crystallinity, confirmed by X-ray diffraction (XRD) analysis. Next, response surface methodology (RSM), I-optimal, was used to examine the synergistic effects of sulfuric acid (SA) and organic acids (Org, citric and acetic acids) and their concentrations (SA: 0.5-2 M and Org: 0.1-2 M) on metal leaching for an eco-friendlier process. Results showed that adding citric acid to SA was more effective, especially at lower concentrations, than using acetic acid. The medium was tested to evaluate the impact of reductant addition. Remarkably, it was discovered that the optimized leaching mixture (1.25 M SA and 0.55 M citric acid) efficiently extracted metals without the need for any reductant like H2O2, highlighting its potential for a simpler and more eco-friendly recycling process. Further optimization identified the ideal solid-to-liquid ratio (62.5 g/L) to minimize acid use. Finally, RSM (D-optimal) was used to investigate the effects of time and temperature on leaching, achieving remarkable recovery rates of 99% ± 0.7 for Li, 98% ± 0.0 for Co, 90% ± 6.6 for Ni, and 92% ± 0.4 for Mn under optimized conditions at 189 min and 95 °C. Chemical cost analysis revealed this method is about 25% more cost-effective than conventional methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI