Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning

聚酰亚胺 材料科学 玻璃化转变 计算机科学 人工智能 机器学习 极限抗拉强度 聚合物 机械工程 纳米技术 复合材料 工程类 图层(电子)
作者
Lei Tao,Jinlong He,Nuwayo Eric Munyaneza,Vikas Varshney,Wei Chen,Guoliang Liu,Ying Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:465: 142949-142949 被引量:60
标识
DOI:10.1016/j.cej.2023.142949
摘要

Polyimides have been widely used in modern industries because of their excellent mechanical and thermal properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes decades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics (MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical polyimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we establish multiple ML models for the thermal and mechanical properties of polyimides based on their experimentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. The obtained ML models demonstrate excellent predictive performance in identifying the key chemical substructures influencing the thermal and mechanical properties of polyimides. The use of explainable machine learning describes the effect of chemical substructures on individual properties, from which human experts can understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify three (3) best-performing novel polyimides that have better-combined properties than existing ones through Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with interactive visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD validation. The high-throughput screening of a large computational dataset can serve as a general approach for new material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer membranes, and dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到,获得积分10
1秒前
1秒前
KONG完成签到,获得积分10
2秒前
3秒前
静静在学呢完成签到,获得积分10
4秒前
兆兆发布了新的文献求助10
4秒前
5秒前
浮游应助一支卓采纳,获得10
5秒前
受伤听露完成签到 ,获得积分10
5秒前
慕青应助怕黑剑封采纳,获得10
6秒前
6秒前
德玛西亚发布了新的文献求助10
6秒前
HHW发布了新的文献求助10
6秒前
奋斗思烟完成签到 ,获得积分10
7秒前
自由的微风完成签到,获得积分10
9秒前
linkman发布了新的文献求助200
9秒前
木子完成签到,获得积分10
10秒前
小房子完成签到,获得积分10
12秒前
Nolan完成签到,获得积分10
12秒前
贪玩板栗发布了新的文献求助10
12秒前
14秒前
15秒前
甜甜的平蓝完成签到,获得积分10
16秒前
17秒前
17秒前
潇洒飞丹完成签到,获得积分10
18秒前
20秒前
21秒前
21秒前
Baywreath完成签到,获得积分10
22秒前
竹筏过海应助Lei采纳,获得30
22秒前
马皓发布了新的文献求助10
22秒前
23秒前
田字格发布了新的文献求助10
24秒前
北极星发布了新的文献求助10
25秒前
26秒前
南原给南原的求助进行了留言
26秒前
27秒前
Wenjian7761完成签到,获得积分10
27秒前
缪缪发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714