Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning

聚酰亚胺 材料科学 玻璃化转变 计算机科学 人工智能 机器学习 极限抗拉强度 聚合物 机械工程 纳米技术 复合材料 工程类 图层(电子)
作者
Lei Tao,Jinlong He,Nuwayo Eric Munyaneza,Vikas Varshney,Wei Chen,Guoliang Liu,Ying Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:465: 142949-142949 被引量:18
标识
DOI:10.1016/j.cej.2023.142949
摘要

Polyimides have been widely used in modern industries because of their excellent mechanical and thermal properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes decades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics (MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical polyimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we establish multiple ML models for the thermal and mechanical properties of polyimides based on their experimentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. The obtained ML models demonstrate excellent predictive performance in identifying the key chemical substructures influencing the thermal and mechanical properties of polyimides. The use of explainable machine learning describes the effect of chemical substructures on individual properties, from which human experts can understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify three (3) best-performing novel polyimides that have better-combined properties than existing ones through Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with interactive visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD validation. The high-throughput screening of a large computational dataset can serve as a general approach for new material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer membranes, and dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辞清完成签到 ,获得积分10
1秒前
科研通AI2S应助jxas采纳,获得10
4秒前
处处吻完成签到 ,获得积分10
9秒前
MADAO完成签到 ,获得积分10
10秒前
Avicii完成签到 ,获得积分10
21秒前
22秒前
22秒前
25秒前
Jaja发布了新的文献求助10
26秒前
友好亚男完成签到 ,获得积分10
27秒前
吱吱发布了新的文献求助10
29秒前
认真搞科研啦完成签到,获得积分10
31秒前
哈哈完成签到 ,获得积分10
31秒前
chhzz完成签到 ,获得积分10
34秒前
电子屎壳郎完成签到,获得积分10
34秒前
彭于晏应助吱吱采纳,获得10
36秒前
青菜虫子完成签到 ,获得积分10
37秒前
QCB完成签到 ,获得积分10
44秒前
快乐太英完成签到 ,获得积分10
44秒前
MEMSforever完成签到,获得积分20
56秒前
xiaofenzi完成签到,获得积分10
57秒前
阿浮完成签到 ,获得积分10
58秒前
犬狗狗完成签到 ,获得积分10
1分钟前
宁静致远完成签到,获得积分10
1分钟前
徐茂瑜完成签到 ,获得积分10
1分钟前
水盒子发布了新的文献求助10
1分钟前
狮子座完成签到 ,获得积分10
1分钟前
星光完成签到 ,获得积分10
1分钟前
ccczzzyyy完成签到,获得积分10
1分钟前
1分钟前
weng完成签到,获得积分10
1分钟前
乒坛巨人完成签到 ,获得积分10
1分钟前
宸浅完成签到 ,获得积分10
1分钟前
风趣的冬卉完成签到 ,获得积分10
1分钟前
研友_LpvQlZ完成签到,获得积分10
1分钟前
萧水白完成签到,获得积分10
1分钟前
坚强的铅笔完成签到 ,获得积分10
1分钟前
英姑应助Fly采纳,获得10
1分钟前
1分钟前
HXL完成签到 ,获得积分10
1分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052652
求助须知:如何正确求助?哪些是违规求助? 2709891
关于积分的说明 7418319
捐赠科研通 2354494
什么是DOI,文献DOI怎么找? 1246122
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921