清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning

聚酰亚胺 材料科学 玻璃化转变 计算机科学 人工智能 机器学习 极限抗拉强度 聚合物 机械工程 纳米技术 复合材料 工程类 图层(电子)
作者
Lei Tao,Jinlong He,Nuwayo Eric Munyaneza,Vikas Varshney,Wei Chen,Guoliang Liu,Ying Li
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:465: 142949-142949 被引量:36
标识
DOI:10.1016/j.cej.2023.142949
摘要

Polyimides have been widely used in modern industries because of their excellent mechanical and thermal properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes decades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics (MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical polyimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we establish multiple ML models for the thermal and mechanical properties of polyimides based on their experimentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. The obtained ML models demonstrate excellent predictive performance in identifying the key chemical substructures influencing the thermal and mechanical properties of polyimides. The use of explainable machine learning describes the effect of chemical substructures on individual properties, from which human experts can understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify three (3) best-performing novel polyimides that have better-combined properties than existing ones through Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with interactive visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD validation. The high-throughput screening of a large computational dataset can serve as a general approach for new material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer membranes, and dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
华仔应助科研通管家采纳,获得10
16秒前
liaomr完成签到 ,获得积分10
31秒前
yufan应助xingsixs采纳,获得10
36秒前
xingsixs完成签到,获得积分10
43秒前
好运来应助xingsixs采纳,获得10
54秒前
时笙完成签到 ,获得积分10
1分钟前
merrylake完成签到 ,获得积分10
1分钟前
饱满豌豆发布了新的文献求助10
1分钟前
段誉完成签到 ,获得积分10
1分钟前
辛勤的泽洋完成签到 ,获得积分10
1分钟前
重重重飞完成签到 ,获得积分10
1分钟前
keyan完成签到 ,获得积分10
2分钟前
whuhustwit完成签到,获得积分10
2分钟前
饱满豌豆完成签到 ,获得积分10
2分钟前
2分钟前
清颜完成签到 ,获得积分10
2分钟前
英喆完成签到 ,获得积分10
2分钟前
甜乎贝贝完成签到 ,获得积分10
2分钟前
双眼皮跳蚤完成签到,获得积分10
2分钟前
柚子完成签到 ,获得积分10
2分钟前
mark33442完成签到,获得积分10
2分钟前
yy完成签到 ,获得积分10
2分钟前
3分钟前
asdwe172009完成签到 ,获得积分10
3分钟前
huiluowork完成签到 ,获得积分10
3分钟前
tyro完成签到,获得积分10
3分钟前
husky完成签到,获得积分10
3分钟前
jibenkun完成签到,获得积分10
3分钟前
小young完成签到 ,获得积分10
4分钟前
150350完成签到 ,获得积分10
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
4分钟前
松柏完成签到 ,获得积分10
4分钟前
自己发布了新的文献求助10
4分钟前
CodeCraft应助自己采纳,获得10
4分钟前
calphen完成签到 ,获得积分10
4分钟前
王旭完成签到,获得积分10
4分钟前
tengyi完成签到 ,获得积分10
5分钟前
残忆完成签到 ,获得积分10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155756
捐赠科研通 3245461
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247