A novel jujube tree trunk and branch salient object detection method for catch-and-shake robotic visual perception

摇动 计算机科学 人工智能 计算机视觉 感知 后备箱 树(集合论) 对象(语法) 突出 数学 心理学 植物 生物 数学分析 物理 天文 神经科学
作者
Zhouzhou Zheng,Yixue Liu,Jianxin Dong,Pengfei Zhao,Yichen Qiao,Shangpeng Sun,Yuxiang Huang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 124022-124022 被引量:1
标识
DOI:10.1016/j.eswa.2024.124022
摘要

Visual perception has become a prerequisite for automated jujube harvesting robot operations under complex orchard conditions. Catch-and-Shake harvesting, as the most efficient and common harvesting method, has widely been applied on various manually operated harvesters to complete large-area jujube fruit harvesting. However, the main factors restricting the development of existing harvesters are labor shortage, high labor cost, and low operating efficiency. To address the issues, we designed a catch-and-shake harvesting robot for jujube tree trunks and branches visual perception that can provide a barrier-free catch-and-shake operation area and guide the manipulator to reach the area to complete the harvesting operation. Meanwhile, a visual perception system including tree trunks and branches detection, skeleton extraction, catch-and-shake area confirmation was presented to guide robot intelligent operations. In the visual perception system, a novel salient object detection model called feature intersection and fusion Transformer (FIT-Transformer) network was proposed to split branches and background to provide reference for determining safe catch-and-shake areas. Moreover, we designed a diverse feature aggregation (DFA) and an attention feature fusion module (AFFM) to strengthen feature learning capabilities and obtain robust perception models. Comparative experimental results showed that our proposed FIT-Transformer model outperformed 12 state-of-the-art (SOTA) algorithms including C2FNet, RAS, BASNet, U2Net, SCRNet, PiCANet, EDRNet, EGNet, ICONR, VST, TransSOD and ABiU_Net. Specifically, the segmentation accuracy of jujube tree trunks and branches using our method showed the satisfactory result on five evaluation indexes under natural environment (the EM, SM, WF, FM and MAE reached 0.9713, 0.8991, 0.8854, 0.8905, and 0.0302, respectively). Field experiments also proved that our method could meet the requirements of operational accuracy and real-time operations
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助meng采纳,获得10
刚刚
1秒前
自由的雁完成签到 ,获得积分10
7秒前
7秒前
8秒前
ting发布了新的文献求助10
11秒前
典雅的涛完成签到,获得积分10
11秒前
余姓懒完成签到,获得积分10
13秒前
15秒前
比奇堡平平无奇烂虾完成签到,获得积分10
19秒前
草字头完成签到,获得积分10
20秒前
21秒前
烟花应助LC采纳,获得10
21秒前
21秒前
23秒前
甜甜完成签到,获得积分10
24秒前
俭朴从安完成签到,获得积分10
24秒前
kagura发布了新的文献求助10
26秒前
meng发布了新的文献求助10
27秒前
29秒前
暮桉完成签到,获得积分10
30秒前
CipherSage应助passion采纳,获得10
33秒前
35秒前
38秒前
zzz发布了新的文献求助10
38秒前
kagura完成签到,获得积分10
39秒前
42秒前
43秒前
meng完成签到,获得积分10
44秒前
希望天下0贩的0应助wu采纳,获得10
44秒前
44秒前
LC发布了新的文献求助10
44秒前
小陈爱吃韩堡堡完成签到,获得积分10
45秒前
45秒前
CodeCraft应助zzzz采纳,获得10
47秒前
帕尼灬尼发布了新的文献求助10
48秒前
48秒前
passion发布了新的文献求助10
49秒前
雨晓音发布了新的文献求助30
51秒前
53秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843872
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544405
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711369
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774416