Radiomics and Deep Learning to Predict Pulmonary Nodule Metastasis at CT

医学 无线电技术 放射科 肺癌 梅德林 心胸外科 工作队 普通外科 病理 外科 公共行政 政治学 法学
作者
Jae Ho Sohn,Brandon K.K. Fields
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:2
标识
DOI:10.1148/radiol.233356
摘要

HomeRadiologyVol. 311, No. 1 PreviousNext Reviews and CommentaryEditorialRadiomics and Deep Learning to Predict Pulmonary Nodule Metastasis at CTJae Ho Sohn , Brandon K. K. FieldsJae Ho Sohn , Brandon K. K. FieldsAuthor AffiliationsFrom the Department of Radiology and Biomedical Imaging, Center for Intelligent Imaging and Division of Cardiothoracic Imaging, University of California San Francisco (UCSF), 185 Berry St, Ste 350, San Francisco, CA 94107.Address correspondence to J.H.S. (email: [email protected]).Jae Ho Sohn Brandon K. K. FieldsPublished Online:Apr 9 2024https://doi.org/10.1148/radiol.233356See also the article by Pan and Hu et al in this issue.MoreSectionsFull textPDF ToolsAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookXLinked In References1. Adams SJ, Stone E, Baldwin DR, Vliegenthart R, Lee P, Fintelmann FJ. Lung cancer screening. Lancet 2023;401(10374):390–408. Crossref, Medline, Google Scholar2. Cardillo G, Petersen RH, Ricciardi S, et al. European guidelines for the surgical management of pure ground-glass opacities and part-solid nodules: Task Force of the European Association of Cardio-Thoracic Surgery and the European Society of Thoracic Surgeons. Eur J Cardiothorac Surg 2023;64(4):ezad222. Crossref, Medline, Google Scholar3. Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6(2):244–285. Crossref, Medline, Google Scholar4. Pan Z, Hu G, Zhu Z, et al. Predicting invasiveness of lung adenocarcinoma at chest CT with deep learning ternary classification models. Radiology 2024;311(1):e232057. Google Scholar5. Polikar R. Ensemble learning. In: Cha Zhang, Ma Y, eds. Ensemble machine learning: methods and applications. New York, NY: Springer Science+Business Media,2012; 1–34. Google Scholar6. Kitami A, Sano F, Hayashi S, et al. Correlation between histological invasiveness and the computed tomography value in pure ground-glass nodules. Surg Today 2016;46(5):593–598. Crossref, Medline, Google Scholar7. Lee SM, Park CM, Goo JM, Lee HJ, Wi JY, Kang CH. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology 2013;268(1):265–273. Link, Google Scholar8. Feng H, Shi G, Xu Q, Ren J, Wang L, Cai X. Radiomics-based analysis of CT imaging for the preoperative prediction of invasiveness in pure ground-glass nodule lung adenocarcinomas. Insights Imaging 2023;14(1):24. Crossref, Medline, Google Scholar9. Yoon HJ, Choi J, Kim E, et al. Deep learning analysis to predict EGFR mutation status in lung adenocarcinoma manifesting as pure ground-glass opacity nodules on CT. Front Oncol 2022;12:951575. Crossref, Medline, Google Scholar10. Varghese BA, Fields BKK, Hwang DH, Duddalwar VA, Matcuk GR Jr, Cen SY. Spatial assessments in texture analysis: what the radiologist needs to know. Front Radiol 2023;3:1240544. Crossref, Medline, Google ScholarArticle HistoryReceived: Dec 11 2023Revision requested: Dec 21 2023Revision received: Dec 27 2023Accepted: Jan 2 2024Published online: Apr 09 2024 FiguresReferencesRelatedDetailsAccompanying This ArticlePredicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification ModelsApr 9 2024RadiologyRecommended Articles RSNA Education Exhibits RSNA Case Collection Vol. 311, No. 1 Metrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可带玉米完成签到 ,获得积分10
刚刚
Xenia完成签到 ,获得积分10
1秒前
zhaoyaoshi完成签到 ,获得积分10
1秒前
SOL完成签到,获得积分10
4秒前
望除应助ahuang2222采纳,获得10
9秒前
可爱的函函应助WangY1263采纳,获得10
14秒前
阿狸完成签到 ,获得积分10
14秒前
昼夜本色完成签到 ,获得积分10
16秒前
顺利的乐枫完成签到 ,获得积分10
16秒前
21秒前
竞鹤完成签到,获得积分10
22秒前
开心完成签到 ,获得积分10
22秒前
鲁卓林完成签到,获得积分10
23秒前
Raymond完成签到,获得积分10
25秒前
WangY1263发布了新的文献求助10
26秒前
星寒完成签到 ,获得积分10
29秒前
ORG完成签到,获得积分10
29秒前
30秒前
kidd瑞完成签到,获得积分10
32秒前
Pises完成签到,获得积分10
32秒前
YJL完成签到 ,获得积分10
33秒前
布知道完成签到 ,获得积分10
34秒前
燕子完成签到,获得积分10
40秒前
摸鱼主编magazine完成签到,获得积分10
40秒前
佰斯特威应助ORG采纳,获得10
43秒前
我独舞完成签到 ,获得积分10
44秒前
Docgyj完成签到 ,获得积分0
45秒前
柠檬完成签到,获得积分10
51秒前
yuhang完成签到 ,获得积分10
56秒前
天明完成签到,获得积分10
57秒前
失眠的香蕉完成签到 ,获得积分10
58秒前
飞天玉虎完成签到,获得积分10
1分钟前
韦远侵完成签到 ,获得积分10
1分钟前
Nathan完成签到,获得积分10
1分钟前
董绮敏完成签到 ,获得积分10
1分钟前
水瓶鱼完成签到,获得积分0
1分钟前
科研通AI2S应助Ace_killer采纳,获得10
1分钟前
幸福的疾完成签到,获得积分20
1分钟前
深情安青应助某人金采纳,获得10
1分钟前
Kevin发布了新的文献求助100
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321608
关于积分的说明 10206370
捐赠科研通 3036673
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797439
科研通“疑难数据库(出版商)”最低求助积分说明 757839