MS-DenseNet-GRU tool wear prediction method based on attention mechanism

机制(生物学) 计算机科学 人工智能 模式识别(心理学) 物理 量子力学
作者
Yaonan Cheng,Jing Xue,Mengda Lu,Shilong Zhou,Xiaoyu Gai,Rui Guan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:3
标识
DOI:10.1177/14759217241240663
摘要

Tool wear was an inevitable physical phenomenon in the cutting procedure. Serious tool wear has a direct effect on the level of processing quality and the effectiveness of production, and it even leads to abnormal cutting processes and a series of safety problems. Effective tool wear prediction can provide a basis for the rational use and replacement of tools to improve tool efficiency and ensure the stable operation of the machining process. Therefore, a tool wear prediction method combining multiple deep learning modules was proposed. To begin, the vibration signal was broken up using the complete ensemble empirical mode decomposition with adaptive noise algorithm. Then, the intrinsic mode functions with a strong correlation with the original signal were screened out according to the Pearson correlation coefficient for signal reconstruction. Additionally, the DenseNet module, the gate recurrent unit (GRU) module and the efficient channel attention module were deeply integrated to build a multi-scale DenseNet-GRU tool wear prediction model with attention mechanisms by learning the relationship of mapping between signal features and tool wear. Finally, the model was trained and tested using milling experimental data. The experiments’ outcomes demonstrated that the suggested method can accurately and reliably estimate the tool wear value. Compared with the DenseNet model, convolutional neural network–long short-term memory model, and DenseNet-GRU model, it further shows that it had superior performance in prediction accuracy and generalization ability. The research results can provide certain technical support for the prediction of tool wear intelligently, which is vital to raising the quality of processing, reducing production costs, and promoting the manufacturing industry’s intelligent development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
照相机发布了新的文献求助10
1秒前
Foxjker完成签到 ,获得积分10
3秒前
5秒前
伊雪儿完成签到,获得积分10
7秒前
10秒前
就叫柠檬吧应助X2q采纳,获得10
11秒前
科研通AI5应助jimskylxk采纳,获得10
11秒前
隐形鸣凤发布了新的文献求助10
11秒前
Jasper应助微笑傥采纳,获得10
13秒前
14秒前
动漫大师发布了新的文献求助10
15秒前
tao完成签到,获得积分10
15秒前
复杂的立果完成签到 ,获得积分10
17秒前
dolabmu发布了新的文献求助20
19秒前
19秒前
21秒前
22秒前
王兽医发布了新的文献求助10
22秒前
文静野狼完成签到,获得积分10
25秒前
张歆雨发布了新的文献求助10
26秒前
阿德里亚诺完成签到,获得积分10
30秒前
30秒前
33秒前
王兽医完成签到,获得积分10
36秒前
37秒前
37秒前
科研通AI5应助隐形鸣凤采纳,获得10
37秒前
fj发布了新的文献求助10
37秒前
大猫完成签到 ,获得积分10
39秒前
好久不见发布了新的文献求助10
39秒前
39秒前
上官若男应助ssss采纳,获得10
40秒前
41秒前
狗狗完成签到 ,获得积分10
42秒前
李健应助叶子采纳,获得10
42秒前
sutharsons应助科研通管家采纳,获得100
43秒前
43秒前
充电宝应助科研通管家采纳,获得10
43秒前
香蕉觅云应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557