Multi‐Task Residential Short‐Term Load Prediction Based on Contrastive Learning

期限(时间) 任务(项目管理) 计算机科学 学习效果 人工智能 工程类 量子力学 物理 经济 微观经济学 系统工程
作者
Wuqing Zhang,Jianbin Li,Sixing Wu,Yiguo Guo
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
卷期号:19 (5): 682-689
标识
DOI:10.1002/tee.24017
摘要

Abstract Load forecasting is crucial for the operation and planning of electricity generation, transmission, and distribution. In the context of short‐term electricity load prediction for residential users, single‐task learning methods fail to consider the relationship among multiple residential users and have limited feature extraction capabilities for residential load data. It is challenging to obtain sufficient information from individual residential user load predictions, resulting in poor prediction performance. To address these issues, we propose a framework for multi‐task residential short‐term load prediction based on contrastive learning. Firstly, clustering techniques are used to select residential users with similar electricity consumption patterns. Secondly, contrastive learning is employed for pre‐training, extracting trend and seasonal feature representations of load sequences, thereby enhancing the feature extraction capability for residential load Feature. Lastly, a multi‐task learning prediction framework is utilized to learn shared information among multiple residential users' loads, enabling short‐term load prediction for multiple residences. The proposed load prediction framework has been implemented on two real‐world load data sets, and the experimental results demonstrate that it effectively reduces the prediction errors for residential load prediction. © 2024 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金井叶完成签到,获得积分10
刚刚
吴彦祖的通通完成签到 ,获得积分10
1秒前
迅捷完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
ZZZ发布了新的文献求助10
3秒前
orixero应助TTTTREE采纳,获得10
3秒前
哈尼完成签到,获得积分10
4秒前
4秒前
热心的巧克力完成签到,获得积分10
4秒前
Lucas应助FuZh采纳,获得10
4秒前
南兮完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
哈哈发布了新的文献求助10
5秒前
5秒前
zhige完成签到,获得积分10
6秒前
Akarate应助wenyh采纳,获得80
6秒前
yuan发布了新的文献求助10
6秒前
FashionBoy应助空想小捣蛋采纳,获得10
7秒前
7秒前
7秒前
Rae完成签到 ,获得积分10
7秒前
7秒前
忧郁平蝶完成签到 ,获得积分10
7秒前
隐形的映波完成签到,获得积分10
7秒前
谨慎水的大猪猪完成签到,获得积分20
8秒前
orixero应助邓谷云采纳,获得10
8秒前
8秒前
Myu111111发布了新的文献求助10
8秒前
CHING发布了新的文献求助10
8秒前
9秒前
wangyanyan发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068161
求助须知:如何正确求助?哪些是违规求助? 4289857
关于积分的说明 13365461
捐赠科研通 4109571
什么是DOI,文献DOI怎么找? 2250420
邀请新用户注册赠送积分活动 1255787
关于科研通互助平台的介绍 1188288