摘要
Chapter 12 Progress and Recent Trends of Application of Low-energy Consuming Devices and IoT Based on Photosynthesis-assisted Power Generation Edith Osorio-de-la-Rosa, Edith Osorio-de-la-Rosa 1 División de Ciencia, Ingeniería y Tecnología, CONAHCYT-Universidad Autónoma del Estado de Quintana Roo, Chetumal, Quintana Roo, MéxicoSearch for more papers by this authorMirna Valdez-Hernández, Mirna Valdez-Hernández 2 Herbario, Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, MéxicoSearch for more papers by this authorRosa M. Woo-García, Rosa M. Woo-García 3 Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río, Veracruz, México 4 Facultad de Ingeniería Eléctrica y Electrónica, Universidad Veracruzana, Boca del Río, Veracruz, MéxicoSearch for more papers by this authorJavier Vázquez-Castillo, Javier Vázquez-Castillo 5 División de Ciencia, Ingeniería y Tecnología, Universidad Autónoma del Estado de Quintana Roo, Chetumal, Quintana Roo, MéxicoSearch for more papers by this author Edith Osorio-de-la-Rosa, Edith Osorio-de-la-Rosa 1 División de Ciencia, Ingeniería y Tecnología, CONAHCYT-Universidad Autónoma del Estado de Quintana Roo, Chetumal, Quintana Roo, MéxicoSearch for more papers by this authorMirna Valdez-Hernández, Mirna Valdez-Hernández 2 Herbario, Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, MéxicoSearch for more papers by this authorRosa M. Woo-García, Rosa M. Woo-García 3 Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río, Veracruz, México 4 Facultad de Ingeniería Eléctrica y Electrónica, Universidad Veracruzana, Boca del Río, Veracruz, MéxicoSearch for more papers by this authorJavier Vázquez-Castillo, Javier Vázquez-Castillo 5 División de Ciencia, Ingeniería y Tecnología, Universidad Autónoma del Estado de Quintana Roo, Chetumal, Quintana Roo, MéxicoSearch for more papers by this author Book Editor(s):Sathish-Kumar Kamaraj, Sathish-Kumar Kamaraj Instituto Politécnico Nacional (IPN), MexicoSearch for more papers by this authorIryna Rusyn, Iryna Rusyn Lviv Polytechnic National University, Lviv, UkraineSearch for more papers by this author First published: 06 March 2024 https://doi.org/10.1002/9781394172337.ch12 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Advances in microelectronics have made possible the development of new semiconductor devices such as low-power devices, sensors, microcontrollers, system on chip and radios, and energy harvesting cards. Most often it involves small electronics systems to collect tiny amounts of power, in the range from nanowatts to hundreds of milliwatts. The entire low-power devices help to open the massive use of the Internet of Things (IoTs) technology. IoT is the vision that everything in the physical world can be digitally represented and connected for communication. There are many architectures of IoT proposed due to its complexity of focusing on finer detailed aspects. Five-layer architecture is one of the simplest that includes the processing and business layers. The leading communication technologies used in the IoT world are IEEE 802.15, low-power WiFi, Bluetooth, LoRa, and other proprietary protocols for wireless networks. One of the challenges in modern technology is to power the devices by using available energy from the place of implementation and maintain their perpetual operation. A novel technology that meets the challenges of energization in a sustainable and stable way over time is the plant microbial fuel cell (PMFC). The IoT and PMFC technologies fusion makes possible agriculture precision. References Alhawari , M. , Baker , M. , Hani , S. , and Mohammed , I. ( 2013 ). A survey of thermal energy harvesting techniques and interface circuitry . In: 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, United Arab Emirates , 381 – 384 . https://doi.org/10.1109/ICECS.2013.6815434 . 10.1109/ICECS.2013.6815434 Google Scholar Apollon , W. , Luna-Maldonado , A.I. , Kamaraj , S.K. et al. ( 2021 ). Progress and recent trends in photosynthetic assisted microbial fuel cells: a review . Biomass and Bioenergy 148 : 106028 . 10.1016/j.biombioe.2021.106028 Web of Science®Google Scholar Apollon , W. , Rusyn , I. , González-Gamboa , N. et al. ( 2022 ). Improvement of zero waste sustainable recovery using microbial energy generation systems: a comprehensive review . Science of the Total Environment 817 : 153055 . https://doi.org/10.1016/j.scitotenv.2022.153055 . 10.1016/j.scitotenv.2022.153055 PubMedGoogle Scholar Arslan , M. , Devisetty , U.K. , Porsch , M. et al. ( 2019 ). RNA-Seq analysis of soft rush ( Juncus effusus ): transcriptome sequencing, de novo assembly, annotation, and polymorphism identification . BMC Genomics 20 ( 1 ): 489 . https://doi.org/10.1186/s12864-019-5886-8 . 10.1186/s12864-019-5886-8 PubMedGoogle Scholar Ayala-Ruiz , D. , Castillo Atoche , A. , Ruiz-Ibarra , E. et al. ( 2019 ). A self-powered PMFC-based wireless sensor node for smart city applications . Wireless Communications and Mobile Computing 2019 , 8986302: 10 . https://doi.org/10.1155/2019/8986302 . 10.1155/2019/8986302 Web of Science®Google Scholar Azri , Y.M. , Tou , I. , Sadi , M. , and Benhabyles , L. ( 2018 ). Bioelectricity generation from three ornamental plants: Chlorophytum comosum , Chasmanthe floribunda and Papyrus diffusus . International Journal of Green Energy 15 . Google Scholar Bloom , A.J. and Lancaster , K.M. ( 2018 ). Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis . Nature Plants 4 : 414 – 422 . https://doi.org/10.1038/s41477-018-0191-0 . 10.1038/s41477-018-0191-0 CASPubMedWeb of Science®Google Scholar Castillo-Atoche , A. , Vázquez-Castillo , J. , Osorio-de-la-Rosa , E. , Heredia-Lozano , J.C. , Avilés-Viñas , J.F. , Cetina , R.Q. , and Estrada-López , J.J . ( 2021 ). An Energy-Saving Data Statistics-Driven Management Technique for Bio-Powered Indoor Wireless Sensor Nodes . IEEE Transactions on Instrumentation and Measurement 70 : 10 . http://doi.org/10.1109/TIM.2021.3063187 . 10.1109/TIM.2021.3063187 Google Scholar Collotta , M. and Pau , G. ( 2015 ). A solution based on bluetooth low energy for smart home energy management . Energies 8 : 11916 – 11938 . 10.3390/en81011916 Web of Science®Google Scholar Di , L. , Li , Y. , Nie , L. et al. ( 2020 ). Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution . Journal of Hazardous Materials 394 : 122542 . 10.1016/j.jhazmat.2020.122542 PubMedGoogle Scholar Dixit , N.K. and Rangra , K.J. ( 2017 ). A survey of energy harvesting technologies . In: 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI) , 1 – 7 . https://doi.org/10.1109/ICICCIS.2017.8660812 . 10.1109/ICICCIS.2017.8660812 Google Scholar Duan , R. , Xing , D. , Chen , T. , and Wu , Y. ( 2022 ). Effects of different inorganic nitrogen sources of Iris pseudacorus and Iris japonica on energy distribution, nitrogen, and phosphorus removal . HortScience 57 ( 6 ): 698 – 707 . 10.21273/HORTSCI16510-22 CASGoogle Scholar Dunn , R. , Thomas , S.M. , Keyss , A.J. , and Long , S.P. ( 1987 ). A comparison of the growth of the C4 grass Spartina anglica with the C3 grass Lolium perenne at different temperatures . Journal of Experimental Botany 38 ( 3 ): 433 – 441 . 10.1093/jxb/38.3.433 Google Scholar Fan , W. , Qiu , C. , Taiyang , W. , and Yuce , M.R. ( 2021 ). Edge-based hybrid system implementation for long-range safety and healthcare IoT applications . IEEE Internet of Things Journal 8 ( 12 ): 9970 – 9980 . https://doi.org/10.1109/JIOT.2021.3050445 . 10.1109/JIOT.2021.3050445 Google Scholar Fan , W. , Taiyang , Z. , Morfuni , D.C. et al. ( 2021 ). An autonomous hand hygiene tracking sensor system for prevention of hospital associated infections . IEEE Sensors Journal 13 ( 21 ): 4308 – 14319 . https://doi.org/10.1109/JSEN.2020.3041331 . 10.1109/JSEN.2020.3041331 Google Scholar Fariduddin , Q. , Ahmad , A. , and Hayat , S. ( 2003 ). Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide . Photosynthetica 41 ( 2 ): 307 – 310 . 10.1023/B:PHOT.0000011968.78037.b1 CASGoogle Scholar Gilani , S.R. , Yaseen , A. , Zaidi , S.R.A. et al. ( 2016 ). Photocurrent generation through plant microbial fuel cell by varying electrode materials . Journal of The Chemical Society of Pakistan 38 . Google Scholar Gomez , C. , Oller , J. , and Paradells , J. ( 2012 ). Overview and evaluation of bluetooth low energy: an emerging low-power wireless technology . Sensors (Basel) 12 ( 9 ): 11734 – 11753 . https://doi.org/10.3390/s120911734 . PMCID: PMC3478807. 10.3390/s120911734 Google Scholar Gong , Y. , Zhou , T. , Wang , P. et al. ( 2019 ). Fundamentals of ornamental plants in removing benzene in indoor air . Atmosphere 10 ( 4 ): 221 . 10.3390/atmos10040221 CASWeb of Science®Google Scholar Gorai , M. , Ennajeh , M. , Khemira , H. , and Neffati , M. ( 2011 ). Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis . Acta Physiologiae Plantarum 33 ( 3 ): 963 – 971 . 10.1007/s11738-010-0628-1 CASGoogle Scholar Guadarrama-Pérez , O. , Moeller-Chávez , G.E. , Bustos-Terrones , V. et al. ( 2022 ). Identification of sugars as root exudates of the macrophyte species Juncus effusus and Philodendron cordatum in constructed wetland-microbial fuel cells during bioelectricity production . Environmental Technology https://doi.org/10.1080/09593330.2022.2121180 . 10.1080/09593330.2022.2121180 Google Scholar Gupta , S.M. , Agarwal , A. , Dev , B. et al. ( 2016 ). Assessment of photosynthetic potential of indoor plants under cold stress . Photosynthetica 54 ( 1 ): 138 – 142 . 10.1007/s11099-015-0173-7 CASWeb of Science®Google Scholar Habibi , G. and Hajiboland , R. ( 2012 ). Comparison of photosynthesis and antioxidative protection in Sedum album and Sedum stoloniferum (Crassulaceae) under water stress . Photosynthetica 50 ( 4 ): 508 – 518 . 10.1007/s11099-012-0066-y CASGoogle Scholar He , J. , Xin , X. , Pei , Z. et al. ( 2021 ). Microbial profiles associated improving bioelectricity generation from sludge fermentation liquid via microbial fuel cells with adding fruit waste extracts . Bioresource Technology 337 : 125452 . 10.1016/j.biortech.2021.125452 Google Scholar Hsu , W.-S. , Preet , A. , Lin , T.-Y. , and Lin , T.-E. ( 2021 ). Miniaturized salinity gradient energy harvesting devices . Molecules 26 : 5469 . https://doi.org/10.3390/molecules26185469 . 10.3390/molecules26185469 CASPubMedGoogle Scholar Imai , K. ( 2008 ). Edible canna: a prospective plant resource from South America . Japanese Journal of Plant Science 2 ( 2 ): 46 – 53 . Google Scholar Industryarc (n.d.) https://www.industryarc.com/ (accessed on 04 December 2022). Google Scholar IPCC ( 2021 ). Climate Change 2021: The Physical Science Basis . Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (ed. V. Masson-Delmotte , P. Zhai , A. Pirani , et al.). Cambridge University Press In Press. Google Scholar Jadhav , D.A. , Ghosal , D. , Chendake , A.D. et al. ( 2021 ). Plant microbial fuel cell as a biomass conversion technology for sustainable development . In: Catalysis for Clean Energy and Environmental Sustainability (ed. K.K. Pant , S.K. Gupta , and E. Ahmad ). Cham : Springer https://doi.org/10.1007/978-3-030-65017-9_5 . 10.1007/978-3-030-65017-9_5 Google Scholar Jain , V. , Pal , M. , Raj , A. et al. ( 2007 ). Photosynthesis and nutrient composition of spinach and fenugreek grown under elevated carbon dioxide concentration . Biologia Plantarum 51 : 559 – 562 . https://doi.org/10.1007/s10535-007-0122-9 . 10.1007/s10535-007-0122-9 CASWeb of Science®Google Scholar Jiang , J. , Wang , H. , Zhang , S. et al. ( 2021 ). The influence of external resistance on the performance of microbial fuel cell and the removal of sulfamethoxazole wastewater . Bioresource Technology 336 : 125308 . 10.1016/j.biortech.2021.125308 Google Scholar Jones , M.B. ( 1987 ). The photosynthetic characteristics of papyrus in a tropical swamp . Oecologia 71 : 355 – 359 . 10.1007/BF00378707 CASPubMedWeb of Science®Google Scholar Ju , J.H. , Son , H.M. , Kim , W.T. , and Yoon , Y.H. ( 2019 ). Effects of activated carbon on growth and physical responses of indoor plant Dracaena braunii to alleviate salt-induced stress in water culture . Journal of Environmental Science International 28 ( 3 ): 321 – 328 . 10.5322/JESI.2019.28.3.321 Google Scholar Jung , K., K. and Park , B.-J. ( 2021 ). Efficiency of Spathiphyllum spp. as a plant-microbial fuel cell . Ornamental Horticulture 27 : 173 – 182 . 10.1590/2447-536x.v27i2.2264 Google Scholar Kabutey , F.T. , Zhao , Q. , Wei , L. et al. ( 2019 ). An overview of plant microbial fuel cells (PMFCs): configurations and applications . Renewable and Sustainable Energy Reviews 110 : 402 – 414 . https://doi.org/10.1016/j.rser.2019.05.016 . 10.1016/j.rser.2019.05.016 Web of Science®Google Scholar Ku , M.L. , Li , W. , Chen , Y. , and Liu , K.J.R. ( 2016 ). Advances in energy harvesting communications: past, present, and future challenges . IEEE Communications Surveys & Tutorials 18 ( 2 ): 1384 – 1412 , 2nd Quart. https://doi.org/10.1109/COMST.2015.2497324 . 10.1109/COMST.2015.2497324 Web of Science®Google Scholar Kuwabara , K. , Higuchi , Y. , Ogasawara , T. et al. ( 2014 ). Wearable blood flowmeter appcessory with low-power laser Doppler signal processing for daily-life healthcare monitoring . In: Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014 , 6274 – 6277 . Google Scholar Lee , J.K. , Kim , D.Y. , Park , S.H. et al. ( 2021 ). Particulate matter (PM) adsorption and leaf characteristics of ornamental sweet potato ( Ipomoea batatas L.) cultivars and two common indoor plants ( Hedera helix L. and Epipremnum aureum Lindl. & Andre) . Horticulturae 8 ( 1 ): 26 . 10.3390/horticulturae8010026 Google Scholar Long , S. , Zhao , L. , Chen , J. et al. ( 2021 ). Tetracycline inhibition and transformation in microbial fuel cell systems: performance, transformation intermediates, and microbial community structure . Bioresource Technology 322 : 124534 . 10.1016/j.biortech.2020.124534 PubMedGoogle Scholar Lu , L.u. , Xing , D. , and Ren , Z.J. ( 2015 ). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell . Bioresource Technology 195 : 115 – 121 . https://doi.org/10.1016/j.biortech.2015.05.098 . 10.1016/j.biortech.2015.05.098 CASPubMedWeb of Science®Google Scholar Magnin , N.C. , Cooley , B.A. , Reiskind , J.B. , and Bowes , G. ( 1997 ). Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata . Plant Physiology 115 ( 4 ): 1681 – 1689 . https://doi.org/10.1104/pp.115.4.1681 . 10.1104/pp.115.4.1681 CASPubMedWeb of Science®Google Scholar Mann , C.J. and Wetzel , R.G. ( 1999 ). Photosynthesis and stomatal conductance of Juncus effusus in a temperate wetland ecosystem . Aquatic Botany 63 ( 2 ): 127 – 144 . https://doi.org/10.1016/S0304-3770(98)00111-9 . 10.1016/S0304-3770(98)00111-9 Google Scholar Martínez-Cisneros , E. et al. ( 2021 ). Analytical modeling of the mechanical behavior of MEMS/NEMS-multilayered resonators with variable cross-sections for sensors and energy harvesters . IEEE Access 9 : 81040 – 81056 . https://doi.org/10.1109/ACCESS.2021.3084600 . 10.1109/ACCESS.2021.3084600 Google Scholar Matsuba , K. , Imaizumi , N. , Kaneko , S. et al. ( 1997 ). Photosynthetic responses to temperature of phosphoenolpyruvate carboxykinase type C4 species differing in cold sensitivity . Plant, Cell & Environment 20 ( 2 ): 268 – 274 . 10.1046/j.1365-3040.1997.d01-55.x CASGoogle Scholar McNaughton , S.J. and Fullem , L.W. ( 1970 ). Photosynthesis and photorespiration in Typha latifolia . Plant Physiology 45 ( 6 ): 703 – 707 . 10.1104/pp.45.6.703 CASPubMedGoogle Scholar Md Khudzari , J. , Kurian , J. , Gariépy , Y. et al. ( 2018 ). Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass . Biomass and Bioenergy 109 . 10.1016/j.biombioe.2017.12.013 Google Scholar Mejdová , M. , Dušek , J. , Foltýnová , L. et al. ( 2021 ). Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition . Scientific Reports 11 : 3723 . https://doi.org/10.1038/s41598-021-82382-2 . 10.1038/s41598-021-82382-2 CASPubMedGoogle Scholar Oon , Y.L. , Ong , S.A. , Ho , L.N. et al. ( 2015 ). Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation . Bioresource Technology 186 : 270 – 275 . https://doi.org/10.1016/j.biortech.2015.03.014 . 10.1016/j.biortech.2015.03.014 CASPubMedWeb of Science®Google Scholar Oon , Y.L. , Ong , S.A. , Ho , L.N. et al. ( 2016 ). Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery . Bioresource Technology 203 . PubMedGoogle Scholar Osorio-de-la-Rosa , E. , Vázquez-Castillo , J. , Carmona-Campos , M. , Barbosa-Pool , G.R. , Becerra-Nuñez , G. , Castillo-Atoche , A. , and Ortegón-Aguilar , J. ( 2019 ). Plant Microbial Fuel Cells–Based Energy Harvester System for Self-powered IoT Applications . Sensors 19 (6): ( 1378 ): 1 – 16 . https://doi.org/10.3390/s19061378 . 10.3390/s19061378 Google Scholar Osorio-de-la-Rosa , E. , Vázquez-Castillo , J. , Castillo-Atoche , A. et al. ( 2021 ). Arrays of plant microbial fuel cells for implementing self-sustainable wireless sensor networks . IEEE Sensors Journal 21 ( 2 ): 1965 – 1974 . https://doi.org/10.1109/JSEN.2020.3019986 . 10.1109/JSEN.2020.3019986 CASWeb of Science®Google Scholar Palattella , M.R. , Dohler , M. , Grieco , A. , Rizzo , G. , Torsner , J. , Engel , T. , Ladid , L. ( 2016 ). Internet of Things in the 5G Era: Enablers, Architecture, and Business Models . IEEE Journal on Selected Areas in Communications 34 ( 3 ): 510 – 527 . https://doi.org/10.1109/JSAC.2016.2525418 . 10.1109/JSAC.2016.2525418 Web of Science®Google Scholar Pamintuan , K.R.S. and Sanchez , K.M. ( 2019 ). Power generation in a plant-microbial fuel cell assembly with graphite and stainless-steel electrodes growing Vigna Radiata . In: IOP Conference Series: Materials Science and Engineering , 012037 . IOP Publishing Ltd https://doi.org/10.1088/1757-899X/703/1/012037 . Google Scholar Psomopoulos , C.S. ( 2013 ). Solar energy: harvesting the sun's energy for sustainable future . In: Handbook of Sustainable Engineering (ed. J. Kauffman and K. Lee ), 1065 – 1107 . Dordrecht, The Netherlands : Springer . 10.1007/978-1-4020-8939-8_117 Google Scholar Ruhil , K. , Ahmad , A. , Iqbal , M. , and Tripathy , B.C. ( 2015 ). Photosynthesis and growth responses of mustard ( Brassica juncea L. cv Pusa Bold) plants to free air carbon dioxide enrichment (FACE) . Protoplasma 252 ( 4 ): 935 – 946 . 10.1007/s00709-014-0723-z CASPubMedGoogle Scholar Rusyn , I. ( 2021 ). Role of microbial community and plant species in performance of plant microbial fuel cells . Renewable and Sustainable Energy Reviews 152 : 111697 . https://doi.org/10.1016/j.rser.2021.111697 . 10.1016/j.rser.2021.111697 Google Scholar Rusyn , I. , Fihurka , O. , and Dyachok , V. ( 2022 ). Effect of plants morphological parameters on plant-microbial feel cell efficiency . Innovative Biosystems and Bioengineering 6 ( 3-4 ): 161 – 168 . https://doi.org/10.20535/ibb.2022.6.3-4.273108 . 10.20535/ibb.2022.6.3-4.273108 CASGoogle Scholar Sanislav , T. , Mois , G.D. , Zeadally , S. , and Folea , S.C. ( 2021 ). Energy harvesting techniques for internet of things (IoT) . IEEE Access 9 : 39530 – 39549 . https://doi.org/10.1109/ACCESS.2021.3064066 . 10.1109/ACCESS.2021.3064066 Web of Science®Google Scholar Sarma , P.J. and Mohanty , K. ( 2018 ). Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode . Journal of Bioscience and Bioengineering 126 . PubMedGoogle Scholar Pallavi Sethi and Smruti R. Sarangi . ( 2017 ). " Internet of things: architectures, protocols, and applications ", Journal of Electrical and Computer Engineering , vol. 2017 , Article ID 9324035 , 25 pages, https://doi.org/10.1155/2017/9324035 10.1155/2017/9324035 Google Scholar Shrirang , M. , Nayak , K.K. , Kumar , M. , and Singh , L. ( 2021 ). Plant microbial fuel cell: opportunities, challenges, and prospects . Bioresource Technology 341 : 125772 . https://doi.org/10.1016/j.biortech.2021.125772 . 10.1016/j.biortech.2021.125772 Google Scholar Sophia , A.C. and Sreeja , S. ( 2017 ). Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator . Sustainable Energy Technologies and Assessments 21 : 59 – 66 . https://doi.org/10.1016/j.seta.2017.05.001 . 10.1016/j.seta.2017.05.001 Web of Science®Google Scholar Srivastava , J. , Kalra , S.J. , and Naraian , R. ( 2014 ). Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel . Applied Water Science 4 ( 3 ): 193 – 202 . 10.1007/s13201-013-0142-x CASGoogle Scholar Srivastava , P. , Yadav , A.K. , and Mishra , B.K. ( 2015 ). The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland . Bioresource Technology 195 . Google Scholar Strik , D.P. , Hamelers , H.V.M. , Snel , J.F. et al. ( 2008 ). Green electricity production with living plants and bacteria in a fuel cell . International Journal of Energy Research 32 ( 9 ): 870 – 876 . https://doi.org/10.1002/er.1397 . 10.1002/er.1397 CASWeb of Science®Google Scholar Sudevalayam , S. and Kulkarni , P. ( 2011 ). Energy harvesting sensor nodes: survey and implications . IEEE Communications Surveys & Tutorials 13 ( 3 ): 443461 , 3rd Quart. 10.1109/SURV.2011.060710.00094 Google Scholar Sudirjo , E. , Buisman , C.J.N. , and Strik , D.P.B.T.B. ( 2019 ). Activated carbon mixed with marine sediment is suitable as bioanode material for Spartina anglica sediment/plant microbial fuel cell: plant growth, electricity generation, and spatial microbial community diversity . Water (Switzerland) 11 ( 9 ): 1810 . https://doi.org/10.3390/w11091810 . 10.3390/w11091810 CASGoogle Scholar Tabish , R. , Mnaouer , A.B. , Touati , F. , and Ghaleb , A.M. ( 2013 ). A comparative analysis of BLE and 6LoWPAN for U-HealthCare applications . In: Proceedings of the 2013 7th IEEE GCC Conference and Exhibition (GCC), Doha, Qatar , 17–20 November 2013, 286 – 291 . 10.1109/IEEEGCC.2013.6705791 Google Scholar Tapia , N.F. , Rojas , C. , Bonilla , C.A. , and Vargas , I.T. ( 2017 ). Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem . Ecological Engineering 108 : 203 – 210 . https://doi.org/10.1016/j.ecoleng.2017.08.017 . 10.1016/j.ecoleng.2017.08.017 Google Scholar Tisarum , R. , Chaitachawong , N. , Takabe , T. et al. ( 2022 ). Physio-morphological and biochemical responses of dixie grass ( Sporobolus virginicus ) to NaCl or Na 2 SO 4 stress . Biologia 77 ( 11 ): 3059 – 3069 . 10.1007/s11756-022-01060-4 CASGoogle Scholar Tsujimura , M. ( 2020 ). Lead the future: semiconductor evolution as seen by CMP manufacturers . In: 2020 China Semiconductor Technology International Conference (CSTIC) . https://doi.org/10.1109/CSTIC49141.2020.9282449 . 10.1109/CSTIC49141.2020.9282449 Google Scholar Valdez-Hernández , M. , Acquaroli , L.N. , Vázquez-Castillo , J. , González-Pérez , O. , Heredia-Lozano , J.C. , Castillo-Atoche , A. , Sosa-Vargas , L. , and Osorio-de-la-Rosa , E. ( 2022 ). Plant/soil-microbial fuel cell operation effects in the biological activity of bioelectrochemical systems . Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 ( 2 ): 2715 – 2729 . https://doi.org/10.1080/15567036.2022.2059597 . 10.1080/15567036.2022.2059597 CASGoogle Scholar Volkov , A.G. ( 2012 ). Plant Electrophysiology: Methods and Cell Electrophysiology . Berlin : Springer https://doi.org/10.1007/978-3-642-29119-7 . Google Scholar Wang , K. , Jun , Y. , Yan , Y. et al. ( 2018 ). A survey on energy internet: architecture, approach, and emerging technologies . IEEE Systems Journal 12 ( 3 ): 2403 – 2416 . https://doi.org/10.1109/JSYST.2016.2639820 . 10.1109/JSYST.2016.2639820 Web of Science®Google Scholar Wang , B. , Long , Z. , Hong , Y. et al. ( 2021 ). Woodpecker-mimic two-layer band energy harvester with a piezoelectric array for powering wrist-worn wearables . Nano Energy 89 : 106385 . 10.1016/j.nanoen.2021.106385 Google Scholar Wetser , K. , Dieleman , K. , Buisman , C. , and Strik , D. ( 2017 ). Electricity from wetlands: tubular plant microbial fuels with silicone gas-diffusion biocathodes . Applied Energy 185 . 10.1016/j.apenergy.2016.10.122 Google Scholar Xu , J.P. , Sun , M. , Wang , H. et al. ( 2018 ). Photosynthetic response of Scirpus validus and Typha orientalis to elevated temperatures in Dianchi Lake, Southwestern China . Journal of Mountain Science 15 ( 12 ): 2666 – 2675 . 10.1007/s11629-018-4853-1 Web of Science®Google Scholar Yamori , W. , Hikosaka , K. , and Way , D.A. ( 2014 ). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation . Photosynthesis Research 119 : 101 – 117 . https://doi.org/10.1007/s11120-013-9874-6 . 10.1007/s11120-013-9874-6 CASPubMedWeb of Science®Google Scholar Yang , Y. , Zhao , Y. , Tang , C. et al. ( 2020 ). Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation . Chemical Engineering Journal 392 : 123708 . 10.1016/j.cej.2019.123708 Web of Science®Google Scholar Zeadally , S. , Siddiqui , F. , and Baig , Z. ( 2019 ). 25 years of bluetooth technology . Future Internet 11 ( 9 ): 194 . https://doi.org/10.3390/fi11090194 . 10.3390/fi11090194 Google Scholar Zhu , D. and Beeby , S. ( 2011 ). Kinetic energy harvesting . In: Energy Harvesting Systems (ed. T. Kaźmierski and S. Beeby ). New York, NY : Springer https://doi.org/10.1007/978-1-4419-7566-9_1 . 10.1007/978-1-4419-7566-9_1 Google Scholar Photosynthesis‐Assisted Energy Generation: From Fundamentals to Lab Scale and In‐Field Applications ReferencesRelatedInformation