亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radical Polymerization of Methylene Heterocyclic Compounds: Functional Polymer Synthesis and Applications

材料科学 亚甲基 聚合 聚合物 阳离子聚合 可逆加成-断裂链转移聚合 离子聚合 钴介导的自由基聚合 自由基聚合 高分子化学 有机化学 化学
作者
Zhuoqun Wang,Antoine Debuigne
出处
期刊:Polymer Reviews [Taylor & Francis]
卷期号:63 (4): 805-851 被引量:1
标识
DOI:10.1080/15583724.2023.2181819
摘要

Synthetic polymers sustain a wide range of applications but the quest for further sophistication and functionalization of polymers remains topical to improve their scope and performance.In this respect, the radical polymerization of exo-methylene heterocyclic compounds (MHCs) is attractive.Compared to the classical acyclic vinyl monomers constrained to the vinyl-type polymerization process, MHCs can undergo different polymerization modes, namely the radical ring-retaining polymerization (rRRP) and the radical ring-opening polymerization (rROP).In rRRP, the cyclic group is preserved and inserted as side group of the polymer backbone offering a myriad of post-polymerization modifications whereas functional groups are incorporated within the backbone of linear polymers and confer them some degradability in rROP.Herein, recent advances in the radical polymerization of MHCs as well as the variety of macromolecular structures and applications it offers are highlighted.The reversible deactivation radical polymerization of MHCs leading to well-defined MHC-based macromolecular architectures, including multifunctional, stimuli-responsive and degradable polymers, is also discussed.The review emphasizes the current limitations of the radical polymerization of MHCs as well as future prospects including the development of innovative bio-based MHCs.Overall, the radical polymerization of MCHs represents a powerful macromolecular engineering tool and a broad field of exploration for polymer chemists.clothing, adhesives, etc, to highly engineered polymers applied in medical, electronic and photonic technologies, to name a few.After several decades of progress, efforts to make polymerization techniques more efficient, versatile and sustainable, remain timely owing the increasing demand for innovative functional polymers able to address the requirements of today's applications.Free radical polymerization (FRP) is one of the most widely used polymerization methods.It proceeds through a classic chain growth process and generates high molecular weight polymers.Its robustness, tolerance to moisture and high compatibility with many functional groups, make radical polymerization a tool of choice for producing synthetic polymers, especially in industry. 1However, the inherent irreversible termination reactions leading to illdefined structures prevent conventional FRP from being further used in cutting-edge applications which often require precise polymer architectures, predictable molecular weight and/or controlled chain-end functionalities.In the past decades, the limitations of conventional free radical polymerization have been overcome by the development of controlled radical polymerization, preferentially referred to as reversible deactivation radical polymerization (RDRP). 2 In the latter, a controlling agent allows the temporary deactivation of the propagating radicals in the form of a dormant species which limits the extent of irreversible reactions and prolongs the life time of radicals.In other words, a dynamic equilibrium rapidly establishes between a small amount of active radicals and a large amount of dormant species. 3In this case, fast and quantitative initiation reaction associated to a low propagation rate compared to the deactivation rate result in polymers with predictable molecular weights, low dispersity and high chain-end fidelity.This also paved the way to polymer with complex architectures including block, gradient, graft, star-shaped and telechelic copolymers to name a few.There are several RDRP techniques This is the authors' version of the article published in Polymer Reviews.Changes were made to this
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏荷狸发布了新的文献求助10
4秒前
夏荷狸完成签到,获得积分20
18秒前
沉默白桃完成签到 ,获得积分10
20秒前
Yaoz完成签到,获得积分10
31秒前
daixan89完成签到 ,获得积分10
42秒前
45秒前
1分钟前
1分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
Yoanna应助科研通管家采纳,获得20
2分钟前
neu_zxy1991完成签到,获得积分10
2分钟前
矜天完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
zzz完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
不知道完成签到,获得积分10
4分钟前
yhgz完成签到,获得积分10
4分钟前
Owen应助卡卡采纳,获得10
4分钟前
芒芒发paper完成签到 ,获得积分10
4分钟前
4分钟前
kuoping完成签到,获得积分0
5分钟前
5分钟前
5分钟前
卡卡发布了新的文献求助10
5分钟前
赘婿应助ww采纳,获得10
5分钟前
CipherSage应助陈诚1111采纳,获得10
5分钟前
5分钟前
5分钟前
陈诚1111发布了新的文献求助10
6分钟前
陈诚1111完成签到,获得积分20
6分钟前
6分钟前
6分钟前
6分钟前
个吧小时亩半地完成签到,获得积分10
6分钟前
ww完成签到,获得积分10
6分钟前
7分钟前
iShine完成签到 ,获得积分10
7分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4112029
求助须知:如何正确求助?哪些是违规求助? 3650446
关于积分的说明 11559935
捐赠科研通 3355181
什么是DOI,文献DOI怎么找? 1843178
邀请新用户注册赠送积分活动 909295
科研通“疑难数据库(出版商)”最低求助积分说明 826175