A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment

分割 试验装置 百分位 骨骼肌 医学 人工智能 计算机科学 生物标志物 内科学 数学 统计 生物 生物化学
作者
Hao Shen,He Pin,Ren Ya,Zhengyong Huang,Shuluan Li,Guoshuai Wang,Minghua Cong,Dehong Luo,Dan Shao,Elaine Yuen-Phin Lee,Ruixue Cui,Li Huo,Jing Qin,Jun Liu,Zhanli Hu,Zhou Liu,Na Zhang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (3): 1384-1398 被引量:12
标识
DOI:10.21037/qims-22-330
摘要

Quantitative muscle and fat data obtained through body composition analysis are expected to be a new stable biomarker for the early and accurate prediction of treatment-related toxicity, treatment response, and prognosis in patients with lung cancer. The use of these biomarkers can enable the adjustment of individualized treatment regimens in a timely manner, which is critical to further improving patient prognosis and quality of life. We aimed to develop a deep learning model based on attention for fully automated segmentation of the abdomen from computed tomography (CT) to quantify body composition.A fully automatic segmentation deep learning model was designed based on the attention mechanism and using U-Net as the framework. Subcutaneous fat, skeletal muscle, and visceral fat were manually segmented by two experts to serve as ground truth labels. The performance of the model was evaluated using Dice similarity coefficients (DSCs) and Hausdorff distance at 95th percentile (HD95).The mean DSC for subcutaneous fat and skeletal muscle were high for both the enhanced CT test set (0.93±0.06 and 0.96±0.02, respectively) and the plain CT test set (0.90±0.09 and 0.95±0.01, respectively). Nevertheless, the model did not perform well in the segmentation performance of visceral fat, especially for the enhanced CT test set. The mean DSC for the enhanced CT test set was 0.87±0.11, while the mean DSC for the plain CT test set was 0.92±0.03. We discuss the reasons for this result.This work demonstrates a method for the automatic outlining of subcutaneous fat, skeletal muscle, and visceral fat areas at L3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助废雨采纳,获得10
1秒前
哈先森完成签到,获得积分10
2秒前
在水一方应助caozhanbo采纳,获得10
2秒前
orixero应助XiYang采纳,获得10
3秒前
回复对方发布了新的文献求助10
3秒前
共享精神应助Kate采纳,获得10
4秒前
5秒前
5秒前
xh发布了新的文献求助10
5秒前
Cole完成签到,获得积分10
6秒前
风趣幻枫完成签到,获得积分10
6秒前
6秒前
田様应助Murphy采纳,获得10
7秒前
浮游应助橘子柚子采纳,获得50
7秒前
韭菜何子完成签到,获得积分10
8秒前
Yy发布了新的文献求助30
9秒前
沉默的觅风完成签到 ,获得积分10
9秒前
游阿游完成签到,获得积分10
9秒前
雾月发布了新的文献求助10
10秒前
科研通AI6应助Yianyan采纳,获得10
10秒前
爱吃鱼的猫猫完成签到,获得积分10
10秒前
10秒前
Sygganggang发布了新的文献求助10
11秒前
洁净的天思完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
韭菜何子发布了新的文献求助10
13秒前
14秒前
14秒前
科研通AI5应助曾丹么么哒采纳,获得10
14秒前
shu完成签到,获得积分10
15秒前
wz完成签到 ,获得积分10
15秒前
Levieus应助阿巴阿巴茶采纳,获得10
17秒前
与我常在完成签到,获得积分20
17秒前
17秒前
zhang发布了新的文献求助10
18秒前
张姚发布了新的文献求助10
19秒前
huqiao发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074163
求助须知:如何正确求助?哪些是违规求助? 4294315
关于积分的说明 13380837
捐赠科研通 4115699
什么是DOI,文献DOI怎么找? 2253823
邀请新用户注册赠送积分活动 1258466
关于科研通互助平台的介绍 1191322