Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 地质学 藻类
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Weiyi Jin,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107684-107684 被引量:11
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未来无限完成签到,获得积分10
刚刚
郝老头完成签到,获得积分0
刚刚
啦啦啦啦啦完成签到,获得积分10
1秒前
SciGPT应助sa0022采纳,获得10
1秒前
搞怪元彤发布了新的文献求助10
3秒前
just完成签到,获得积分10
3秒前
碧蓝雨安完成签到,获得积分10
3秒前
欣忆完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助30
4秒前
ScarlettU完成签到,获得积分10
6秒前
Cbbaby完成签到,获得积分10
6秒前
怕黑的寻菱完成签到,获得积分10
6秒前
一路硕博完成签到,获得积分10
7秒前
storm完成签到,获得积分10
7秒前
李某某完成签到,获得积分10
7秒前
咕噜噜咕噜完成签到,获得积分10
8秒前
追寻纲完成签到,获得积分10
8秒前
8秒前
lll完成签到,获得积分10
8秒前
颜老大完成签到,获得积分10
8秒前
海心完成签到,获得积分10
8秒前
丰富的大地完成签到,获得积分10
9秒前
吃不饱完成签到,获得积分10
9秒前
酷酷慕山完成签到 ,获得积分10
9秒前
Frank完成签到 ,获得积分10
9秒前
情怀应助111采纳,获得10
9秒前
Java完成签到,获得积分10
10秒前
萌芽状态完成签到,获得积分10
10秒前
SCIER完成签到,获得积分10
11秒前
拉扣发布了新的文献求助10
11秒前
完美的一天完成签到,获得积分10
11秒前
今天做实验了吗完成签到 ,获得积分10
11秒前
LS完成签到,获得积分10
11秒前
zcm1999完成签到,获得积分10
12秒前
怕黑鑫完成签到,获得积分10
12秒前
慕青应助文舒采纳,获得10
12秒前
认真科研完成签到,获得积分10
13秒前
活力成败完成签到,获得积分10
15秒前
Orange应助八月宁静采纳,获得10
16秒前
路易斯完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927193
求助须知:如何正确求助?哪些是违规求助? 4196578
关于积分的说明 13033245
捐赠科研通 3969198
什么是DOI,文献DOI怎么找? 2175307
邀请新用户注册赠送积分活动 1192402
关于科研通互助平台的介绍 1103065