清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FFCA-YOLO for Small Object Detection in Remote Sensing Images

稳健性(进化) 目标检测 计算机科学 特征(语言学) 计算机视觉 背景(考古学) 人工智能 水准点(测量) 数据挖掘 模式识别(心理学) 生物 基因 哲学 古生物学 化学 地理 生物化学 语言学 大地测量学
作者
Yin Zhang,Mu Ye,Guiyi Zhu,Yong Liu,Pengyu Guo,Junhua Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:229
标识
DOI:10.1109/tgrs.2024.3363057
摘要

Issues such as insufficient feature representation and background confusion make detection tasks for small object in remote sensing arduous. Particularly when the algorithm will be deployed on board for real-time processing, which requires extensive optimization of accuracy and speed under limited computing resources. To tackle these problems, an efficient detector called FFCA-YOLO(Feature enhancement, Fusion and Context Aware YOLO) is proposed in this paper. FFCA-YOLO includes three innovative lightweight and plug-and-play modules: feature enhancement module(FEM), feature fusion module(FFM) and spatial context aware module(SCAM). These three modules improve the network capabilities of local area awareness, multi-scale feature fusion and global association cross channels and space, respectively, while trying to avoid increasing complexity as possible. Thus the weak feature representations of small objects are enhanced and the confusable backgrounds are suppressed. Two public remote sensing datasets(VEDAI and AI-TOD) for small object detection and one self-built dataset(USOD) are used to validate the effectiveness of FFCA-YOLO. The accuracy of FFCA-YOLO reaches 0.748, 0.617 and 0.909(in terms of mAP 50 ) that exceeds several benchmark models and state-of-the-art methods. Meanwhile, the robustness of FFCA-YOLO is also validated under different simulated degradation conditions. Moreover, to further reduce computational resource consumption while ensuring efficiency, a lite version of FFCA-YOLO(L-FFCA-YOLO) is optimized by reconstructing the backbone and neck of FFCA-YOLO based on partial convolution. L-FFCA-YOLO has faster speed, smaller parameter scale, lower computing power requirement but little accuracy loss compared with FFCA-YOLO. The source code will be available at https://github.com/yemu1138178251/FFCA-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenxun关注了科研通微信公众号
14秒前
38秒前
量子星尘发布了新的文献求助10
43秒前
chenxun发布了新的文献求助10
45秒前
陈文思完成签到 ,获得积分10
51秒前
一一完成签到,获得积分10
59秒前
nicky完成签到 ,获得积分10
1分钟前
zhangsan完成签到,获得积分10
1分钟前
生动的沛白完成签到 ,获得积分10
1分钟前
lling完成签到 ,获得积分10
1分钟前
1分钟前
SJD完成签到,获得积分0
1分钟前
以鹿之路发布了新的文献求助10
1分钟前
欢呼亦绿完成签到,获得积分10
1分钟前
tjfwg发布了新的文献求助10
2分钟前
tjfwg完成签到,获得积分10
2分钟前
qzh006完成签到,获得积分10
3分钟前
碗在水中央完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
元宝麻麻发布了新的文献求助10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
默默问芙完成签到,获得积分10
3分钟前
俊逸的盛男完成签到 ,获得积分10
4分钟前
SciGPT应助元宝麻麻采纳,获得10
4分钟前
4分钟前
活力的妙之完成签到 ,获得积分10
4分钟前
zzgpku完成签到,获得积分0
4分钟前
懒得起名字完成签到 ,获得积分10
4分钟前
共享精神应助尊敬的凌晴采纳,获得10
5分钟前
sevenhill完成签到 ,获得积分0
5分钟前
浚稚完成签到 ,获得积分10
5分钟前
Upupgrowth完成签到 ,获得积分10
5分钟前
年轻千愁完成签到 ,获得积分10
5分钟前
5分钟前
Weilu完成签到 ,获得积分10
5分钟前
5分钟前
naki完成签到,获得积分10
5分钟前
HCCha完成签到,获得积分10
5分钟前
胡国伦完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299