清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

BoMaCNet: A Convolutional Neural Network Model to Detect Bone Marrow Cell Cytology

计算机科学 血液学家 卷积神经网络 骨髓 人工智能 人工神经网络 模式识别(心理学) 早幼粒细胞 病理 医学 疾病
作者
Abrar Shahriar Abeed,Asif Atiq,Afra Antara Anjum,Azher Ahmed Efat,Dewan Ziaul Karim
标识
DOI:10.1109/iccit57492.2022.10054976
摘要

Bone Marrow is responsible for the creation of all the different types of blood cells in the human body and helps us to identify various types of bone marrow cell disorders. Therefore it is necessary to correctly identify and classify the different types of cells. Conducting different pathological and blood tests may take some time. Applying a Deep Neural Network (DNN) for blood cell detection allows us to quickly classify the call types, which further enables us to identify multiple types of blood cells simultaneously from the same sample. Not only does this save us the time needed for cell classification but also removes the possibility of human error as an automated system can deliver more precise and instantaneous results than a hematologist or pathologist. Machine Learning algorithms are capable of solving these problems quite easily. With that in mind, we propose a CNN-based architecture named BoMaCNet, which is capable of detecting and classifying bone marrow cell images quickly and accurately. Our CNN model takes 96000 images in total, which are then split into training, testing, and validation. Six common types of bone marrow cells (Artefact, Blast, Erythroblast, Lymphocyte, Segmented Neutrophil and Promyelocyte) are chosen for this research. Our entire data set was split into three parts 80% was kept for training, 10% was kept for validation and 10% was used for testing. For testing, 1600 instances of each label were used. Our model was able to produce the highest by far results on the used dataset by achieving an overall accuracy of 95.71%. With 95.71% accuracy in training and 93.06% accuracy in validation along with achieving an impressive mean average F-1 score of 0.93, we were able to achieve exceptional results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕德地完成签到,获得积分10
3秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
糟糕的翅膀完成签到,获得积分10
21秒前
昏睡的乌冬面完成签到 ,获得积分10
23秒前
田様应助bull9518采纳,获得10
27秒前
Qiancheni完成签到,获得积分10
28秒前
SciGPT应助汎影采纳,获得10
31秒前
39秒前
小马甲应助汎影采纳,获得10
40秒前
hmx发布了新的文献求助10
45秒前
maxyer完成签到,获得积分10
49秒前
深情安青应助汎影采纳,获得10
49秒前
李健的小迷弟应助汎影采纳,获得10
1分钟前
汎影完成签到,获得积分10
1分钟前
tao完成签到 ,获得积分10
1分钟前
x银河里完成签到 ,获得积分10
1分钟前
1分钟前
QiaoHL完成签到 ,获得积分10
1分钟前
波波完成签到 ,获得积分10
1分钟前
1分钟前
童白翠完成签到,获得积分20
1分钟前
童白翠发布了新的文献求助10
1分钟前
Aixia完成签到 ,获得积分10
1分钟前
龙猫爱看书完成签到,获得积分10
1分钟前
李健应助科研通管家采纳,获得10
2分钟前
巴啦啦小魔仙完成签到 ,获得积分10
2分钟前
前行的灿完成签到 ,获得积分10
2分钟前
Eri_SCI完成签到 ,获得积分10
2分钟前
吃点水果保护局完成签到 ,获得积分10
2分钟前
kenchilie完成签到 ,获得积分10
2分钟前
Raymond完成签到,获得积分10
2分钟前
刘丰完成签到 ,获得积分10
3分钟前
al完成签到 ,获得积分10
3分钟前
狐狸小姐完成签到 ,获得积分10
3分钟前
尛破孩完成签到,获得积分10
3分钟前
可靠尔岚完成签到,获得积分10
3分钟前
AUGKING27完成签到 ,获得积分10
3分钟前
可靠尔岚发布了新的文献求助10
3分钟前
minnie完成签到 ,获得积分10
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318422
捐赠科研通 3060615
什么是DOI,文献DOI怎么找? 1679712
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353