Development of Expert-Level Classification of Seizures and Rhythmic and Periodic Patterns During EEG Interpretation

脑电图 发作性 接收机工作特性 人工智能 模式识别(心理学) 可靠性(半导体) 心理学 听力学 神经科学 计算机科学 机器学习 医学 量子力学 物理 功率(物理)
作者
Jing Jin,Wendong Ge,Shenda Hong,Marta Bento Fernandes,Zhen Lin,Chaoqi Yang,Sungtae An,Aaron F. Struck,Aline Herlopian,Ioannis Karakis,Jonathan J. Halford,Marcus Ng,Emily L. Johnson,Brian Appavu,Rani A. Sarkis,Gamaleldin Osman,Peter W. Kaplan,Monica B. Dhakar,Lakshman Arcot Jayagopal,Zubeda Sheikh,Olga Taraschenko,Sarah Schmitt,Hiba A. Haider,Jennifer A. Kim,Christa B. Swisher,Nicolas Gaspard,Mackenzie C. Cervenka,Andres Rodriguez Ruiz,Jong Woo Lee,Mohammad Tabaeizadeh,Emily J. Gilmore,Kristy Nordstrom,Ji Yeoun Yoo,Manisha Holmes,Susan T. Herman,Jennifer Williams,Jay Pathmanathan,Fábio A. Nascimento,Ziwei Fan,Samaneh Nasiri,Mouhsin M. Shafi,Sydney S. Cash,Daniel B. Hoch,Andrew J. Cole,Eric S. Rosenthal,Sahar F. Zafar,Jimeng Sun,M. Brandon Westover
出处
期刊:Neurology [Lippincott Williams & Wilkins]
卷期号:100 (17) 被引量:4
标识
DOI:10.1212/wnl.0000000000207127
摘要

Seizures (SZs) and other SZ-like patterns of brain activity can harm the brain and contribute to in-hospital death, particularly when prolonged. However, experts qualified to interpret EEG data are scarce. Prior attempts to automate this task have been limited by small or inadequately labeled samples and have not convincingly demonstrated generalizable expert-level performance. There exists a critical unmet need for an automated method to classify SZs and other SZ-like events with expert-level reliability. This study was conducted to develop and validate a computer algorithm that matches the reliability and accuracy of experts in identifying SZs and SZ-like events, known as "ictal-interictal-injury continuum" (IIIC) patterns on EEG, including SZs, lateralized and generalized periodic discharges (LPD, GPD), and lateralized and generalized rhythmic delta activity (LRDA, GRDA), and in differentiating these patterns from non-IIIC patterns.We used 6,095 scalp EEGs from 2,711 patients with and without IIIC events to train a deep neural network, SPaRCNet, to perform IIIC event classification. Independent training and test data sets were generated from 50,697 EEG segments, independently annotated by 20 fellowship-trained neurophysiologists. We assessed whether SPaRCNet performs at or above the sensitivity, specificity, precision, and calibration of fellowship-trained neurophysiologists for identifying IIIC events. Statistical performance was assessed by the calibration index and by the percentage of experts whose operating points were below the model's receiver operating characteristic curves (ROCs) and precision recall curves (PRCs) for the 6 pattern classes.SPaRCNet matches or exceeds most experts in classifying IIIC events based on both calibration and discrimination metrics. For SZ, LPD, GPD, LRDA, GRDA, and "other" classes, SPaRCNet exceeds the following percentages of 20 experts-ROC: 45%, 20%, 50%, 75%, 55%, and 40%; PRC: 50%, 35%, 50%, 90%, 70%, and 45%; and calibration: 95%, 100%, 95%, 100%, 100%, and 80%, respectively.SPaRCNet is the first algorithm to match expert performance in detecting SZs and other SZ-like events in a representative sample of EEGs. With further development, SPaRCNet may thus be a valuable tool for an expedited review of EEGs.This study provides Class II evidence that among patients with epilepsy or critical illness undergoing EEG monitoring, SPaRCNet can differentiate (IIIC) patterns from non-IIIC events and expert neurophysiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gqfang完成签到,获得积分10
1秒前
2秒前
梁世秀发布了新的文献求助10
2秒前
科研通AI5应助Nancy采纳,获得10
2秒前
负责丹亦完成签到,获得积分10
3秒前
酷波er应助安安采纳,获得10
4秒前
科研通AI5应助nylon采纳,获得10
5秒前
6秒前
星辰大海应助一一采纳,获得10
8秒前
gt发布了新的文献求助10
9秒前
9秒前
依楼发布了新的文献求助10
10秒前
11秒前
Ace_killer完成签到,获得积分20
11秒前
baolequ发布了新的文献求助10
12秒前
13秒前
充电宝应助Gakay采纳,获得10
14秒前
难过盼海完成签到,获得积分20
14秒前
千空发布了新的文献求助10
14秒前
Nancy发布了新的文献求助10
16秒前
初初见你完成签到,获得积分10
17秒前
霍师傅发布了新的文献求助10
18秒前
科研通AI5应助立尽西风采纳,获得10
18秒前
19秒前
baolequ完成签到,获得积分10
19秒前
田様应助任性的诗柳采纳,获得10
21秒前
一一发布了新的文献求助10
23秒前
23秒前
大个应助Mira采纳,获得10
23秒前
26秒前
像棉花糖的云完成签到,获得积分10
27秒前
28秒前
科研通AI5应助霍师傅采纳,获得10
28秒前
29秒前
30秒前
31秒前
duhp发布了新的文献求助10
31秒前
wanci应助梁世秀采纳,获得10
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366