Cobalt-Promoted Noble-Metal Catalysts for Efficient Hydrogen Generation from Ammonia Borane Hydrolysis

氨硼烷 化学 催化作用 贵金属 水解 无机化学 制氢 金属 有机化学
作者
Yali Meng,Qinghao Sun,Tianjun Zhang,Jichao Zhang,Zhuoya Dong,Yanhang Ma,Zhangxiong Wu,Huifang Wang,Xiaoguang Bao,Qiming Sun,Jihong Yu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (9): 5486-5495 被引量:143
标识
DOI:10.1021/jacs.3c00047
摘要

Ammonia borane (AB) has been regarded as a promising material for chemical hydrogen storage. However, the development of efficient, cost-effective, and stable catalysts for H2 generation from AB hydrolysis remains a bottleneck for realizing its practical application. Herein, a step-by-step reduction strategy has been developed to synthesize a series of bimetallic species with small sizes and high dispersions onto various metal oxide supports. Superior to other non-noble metal species, the introduction of Co species can remarkably and universally promote the catalytic activity of various noble metals (e.g., Pt, Rh, Ru, and Pd) in AB hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst exhibits a superhigh H2 generation rate from AB hydrolysis, showing a turnover frequency (TOF) value of 2250 molH2 molPt–1 min–1 at 298 K. Such a TOF value is about 10 and 15 times higher than that of the monometal Pt/TiO2 and commercial Pt/C catalysts, respectively. The density functional theory (DFT) calculation reveals that the synergy between Pt and CoO species can remarkably promote the chemisorption and dissociation of water molecules, accelerating the H2 evolution from AB hydrolysis. Significantly, the representative Pt0.25%Co3%/TiO2 catalyst exhibits excellent stability, achieving a record-high turnover number of up to 215,236 at room temperature. The excellent catalytic performance, superior stability, and low cost of the designed catalysts create new prospects for their practical application in chemical hydrogen storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡易形应助张月采纳,获得10
刚刚
科研通AI5应助626采纳,获得10
1秒前
成1完成签到,获得积分10
1秒前
1秒前
1秒前
NexusExplorer应助nashanbei采纳,获得10
1秒前
CC发布了新的文献求助10
1秒前
090发布了新的文献求助10
1秒前
1秒前
小乌龟完成签到,获得积分10
2秒前
陈一口完成签到 ,获得积分10
2秒前
2秒前
3秒前
Kimo完成签到,获得积分10
3秒前
3秒前
regent完成签到,获得积分10
3秒前
CC完成签到 ,获得积分10
4秒前
4秒前
4秒前
muyan完成签到 ,获得积分10
4秒前
浮游应助Jackson_lv采纳,获得10
4秒前
酷波er应助醉眠采纳,获得10
5秒前
5秒前
FashionBoy应助wwwwwnnnnn采纳,获得10
6秒前
古卡可可完成签到,获得积分10
6秒前
7秒前
着急的诗兰完成签到,获得积分10
7秒前
张钰完成签到,获得积分10
7秒前
7秒前
8秒前
Cici发布了新的文献求助10
8秒前
小二郎应助奥特曼吃不胖采纳,获得30
9秒前
Owen应助相龙采纳,获得10
9秒前
9秒前
gi发布了新的文献求助10
9秒前
科研通AI6应助nadeem采纳,获得10
9秒前
大个应助文瑶琪采纳,获得10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954599
求助须知:如何正确求助?哪些是违规求助? 4216963
关于积分的说明 13121608
捐赠科研通 3999165
什么是DOI,文献DOI怎么找? 2188699
邀请新用户注册赠送积分活动 1203775
关于科研通互助平台的介绍 1116111