Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 经济 运营管理
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助你好好好好好采纳,获得10
1秒前
大个应助兰彻采纳,获得10
1秒前
荔枝吖发布了新的文献求助10
2秒前
3秒前
羊羊羊完成签到,获得积分10
3秒前
书记发布了新的文献求助10
3秒前
完美世界应助zanna采纳,获得10
4秒前
肖耶啵完成签到,获得积分10
4秒前
欣慰的小甜瓜完成签到,获得积分10
4秒前
charitial完成签到,获得积分10
5秒前
welldone发布了新的文献求助10
5秒前
5秒前
求求啦完成签到,获得积分10
6秒前
7秒前
7秒前
上官若男应助lyyyyyyyyyyyy采纳,获得10
7秒前
熹微完成签到,获得积分10
8秒前
华仔应助荔枝吖采纳,获得10
9秒前
徐徐图之发布了新的文献求助10
9秒前
小李完成签到,获得积分10
10秒前
10秒前
默默的巧蕊完成签到,获得积分10
10秒前
11秒前
纯情的天奇完成签到 ,获得积分10
11秒前
少堂完成签到,获得积分10
11秒前
lin完成签到,获得积分10
12秒前
yang发布了新的文献求助10
12秒前
欢喜的代容完成签到,获得积分10
12秒前
科研通AI2S应助3399采纳,获得10
13秒前
liangyuting完成签到,获得积分10
13秒前
14秒前
大模型应助wst采纳,获得10
14秒前
小磊完成签到,获得积分10
14秒前
14秒前
ww完成签到 ,获得积分10
14秒前
Hello应助wf采纳,获得10
15秒前
HMONEY完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
徐徐图之完成签到 ,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869690
求助须知:如何正确求助?哪些是违规求助? 3411820
关于积分的说明 10676825
捐赠科研通 3136356
什么是DOI,文献DOI怎么找? 1730203
邀请新用户注册赠送积分活动 833806
科研通“疑难数据库(出版商)”最低求助积分说明 780946