Utilizing artificial intelligence and electroencephalography to assess expertise on a simulated neurosurgical task

脑电图 任务(项目管理) 计算机科学 阿尔法(金融) 人工智能 听力学 心理学 医学 工程类 心理测量学 发展心理学 神经科学 结构效度 系统工程
作者
Sharif Natheir,Sommer Christie,Recai Yilmaz,Alexander Winkler-Schwartz,Khalid Bajunaid,Abdulrahman J. Sabbagh,Penny Werthner,Rolando F. Del Maestro
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106286-106286 被引量:2
标识
DOI:10.1016/j.compbiomed.2022.106286
摘要

Virtual reality surgical simulators have facilitated surgical education by providing a safe training environment. Electroencephalography (EEG) has been employed to assess neuroelectric activity during surgical performance. Machine learning (ML) has been applied to analyze EEG data split into frequency bands. Although EEG is widely used in fields requiring expert performance, it has yet been used to classify surgical expertise. Thus, the goals of this study were to (a) develop an ML model to accurately differentiate skilled and less-skilled performance using EEG data recorded during a simulated surgery, (b) explore the relative importance of each EEG bandwidth to expertise, and (c) analyze differences in EEG band powers between skilled and less-skilled individuals. We hypothesized that EEG recordings during a virtual reality surgery task would accurately predict the expertise level of the participant. Twenty-one participants performed three simulated brain tumor resection procedures on the NeuroVR™ platform (CAE Healthcare, Montreal, Canada) while EEG data was recorded. Participants were divided into 2 groups. The skilled group was composed of five neurosurgeons and five senior neurosurgical residents (PGY4-6), and the less-skilled group was composed of six junior residents (PGY1-3) and five medical students. A total of 13 metrics from EEG frequency bands and ratios (e.g., alpha, theta/beta ratio) were generated. Seven ML model types were trained using EEG activity to differentiate between skilled and less-skilled groups. The artificial neural network achieved the highest testing accuracy of 100% (AUROC = 1.0). Model interpretation via Shapley analysis identified low alpha (8-10 Hz) as the most important metric for classifying expertise. Skilled surgeons displayed higher (p = 0.044) low-alpha than the less-skilled group. Furthermore, skilled surgeons displayed significantly lower TBR (p = 0.048) and significantly higher beta (13-30 Hz, p = 0.049), beta 1 (15-18 Hz, p = 0.014), and beta 2 (19-22 Hz, p = 0.015), thus establishing these metrics as important markers of expertise. ACGME CORE COMPETENCIES: Practice-Based Learning and Improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
516165165发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
lyfsci完成签到,获得积分20
1秒前
友好的牛排完成签到,获得积分10
2秒前
WXHL发布了新的文献求助30
4秒前
yc发布了新的文献求助10
4秒前
4秒前
lyfsci发布了新的文献求助10
5秒前
7秒前
7秒前
fffff完成签到,获得积分10
7秒前
科研通AI5应助管理想采纳,获得10
9秒前
等待的惜海完成签到,获得积分10
11秒前
11秒前
12秒前
Lin完成签到 ,获得积分10
13秒前
14秒前
搜集达人应助执着的若灵采纳,获得10
15秒前
Nancy发布了新的文献求助10
15秒前
852应助zyp采纳,获得10
16秒前
小马甲应助Wjh123456采纳,获得10
17秒前
路奇发布了新的文献求助30
18秒前
F503完成签到,获得积分10
19秒前
张奥星发布了新的文献求助10
19秒前
tao完成签到,获得积分20
19秒前
现代的烤鸡完成签到,获得积分10
19秒前
管理想发布了新的文献求助10
19秒前
20秒前
21秒前
23秒前
iNk应助HY采纳,获得10
23秒前
深情安青应助passby采纳,获得10
24秒前
自行设置完成签到,获得积分10
24秒前
24秒前
项初蝶发布了新的文献求助20
24秒前
木木完成签到,获得积分10
25秒前
yingying发布了新的文献求助10
25秒前
cdercder应助浮生采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836