已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Isogeometric analysis-based physics-informed graph neural network for studying traffic jam in neurons

细胞内转运 解算器 计算机科学 等几何分析 过程(计算) 图形 功能(生物学) 模拟 生物系统 有限元法 细胞内 理论计算机科学 工程类 结构工程 化学 生物 进化生物学 操作系统 程序设计语言 生物化学
作者
Angran Li,Yongjie Zhang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:403: 115757-115757 被引量:26
标识
DOI:10.1016/j.cma.2022.115757
摘要

The motor-driven intracellular transport plays a crucial role in supporting a neuron cell's survival and function, with motor proteins and microtubule (MT) structures collaborating to promptly deliver the essential materials to the right location in neuron. The disruption of transport may lead to the onset of various neurodegenerative diseases. Therefore, it is essential to study how neurons regulate the material transport process and have a better understanding of the traffic jam formation. In our earlier work, we developed a PDE-constrained optimization model and an isogeometric analysis (IGA) solver to simulate traffic jams induced by MT reduction and MT swirl. Here, we develop a novel IGA-based physics-informed graph neural network (PGNN) to quickly predict normal and abnormal transport phenomena such as traffic jam in different neuron geometries. In particular, the proposed method learns from the IGA simulation of the intracellular transport process and provides accurate material concentration prediction of normal transport and MT-induced traffic jam. The IGA-based PGNN model contains simulators to handle local prediction of both normal and two MT-induced traffic jams in pipes, as well as another simulator to predict normal transport in bifurcations. Bézier extraction is adopted to incorporate the geometry information into the simulators to accurately compute the physics informed loss function with PDE residuals. Moreover, a GNN assembly model is adopted to tackle different neuron morphologies by assembling local prediction into the entire geometry. In summary, the well-trained model effectively predicts the distribution of transport velocity and material concentration during traffic jam and normal transport with an average error less than 10% compared to IGA simulations. The effectiveness of the proposed model is demonstrated within several complex neuron geometries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
汉堡包应助星期一采纳,获得10
2秒前
持卿应助小王采纳,获得10
2秒前
3秒前
zhangzhaoxin发布了新的文献求助10
4秒前
笨笨念文完成签到 ,获得积分10
5秒前
5秒前
Milktea123完成签到,获得积分10
5秒前
6秒前
英姑应助季文婷采纳,获得10
6秒前
美好谷芹发布了新的文献求助10
7秒前
大个应助酷炫的雪珊采纳,获得10
7秒前
8秒前
9秒前
zhangyk发布了新的文献求助10
11秒前
科研通AI2S应助凡一采纳,获得10
12秒前
12秒前
不觉完成签到 ,获得积分10
13秒前
FEMTO完成签到 ,获得积分10
13秒前
绵羊发布了新的文献求助10
14秒前
15秒前
15秒前
机灵千萍完成签到,获得积分10
15秒前
FJ发布了新的文献求助10
15秒前
LALA发布了新的文献求助10
17秒前
可爱的函函应助阿俊1212采纳,获得10
17秒前
季文婷发布了新的文献求助10
18秒前
zhangyk完成签到,获得积分10
20秒前
浮游应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522001
求助须知:如何正确求助?哪些是违规求助? 4613204
关于积分的说明 14537757
捐赠科研通 4550874
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446330