Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS

水文地质学 地下水 人工神经网络 领域(数学) 计算机科学 相关系数 校准 数据挖掘 地下水模型 水文学(农业) 统计 地质学 数学 岩土工程 人工智能 机器学习 含水层 地下水流 纯数学
作者
Khabat Star Mohammed,Saeid Shabanlou,Ahmad Rajabi,Fariborz Yosefvand,Mohammad Ali Izadbakhsh
出处
期刊:Applied Water Science [Springer Nature]
卷期号:13 (2) 被引量:64
标识
DOI:10.1007/s13201-022-01861-7
摘要

Abstract Groundwater level fluctuations are one of the main components of the hydrogeological cycle and one of the required variables for many water resources operation models. The numerical models can estimate groundwater level (GWL) based on extensive statistics and information and using complex equations in any area. But one of the most important challenges in analyzing and predicting groundwater depletion in water management is the lack of reliable and complete data. For this reason, the use of artificial intelligence models with high predictive accuracy and due to the need for less data is inevitable. In recent years, the use of different numerical models has been noticed as an efficient solution. These models are able to estimate groundwater levels in any region based on extensive statistics and information and also various field experiments such as pumping tests, geophysics, soil and land use maps, topography and slope data, different boundary conditions and complex equations. In the current research, first, by using available statistics, information and maps, the groundwater level fluctuations of the Sonqor plain are simulated by the GMS model, and the accuracy of the model is evaluated in two stages of calibration and validation. Then, due to the need for much less data volume in artificial intelligence-based methods, the GA-ANN and ICA-ANN hybrid methods and the ELM and ORELM models are utilized. The results display that the output of the ORELM model has the best fit with observed data with a correlation coefficient equal to 0.96, and it also has the best and closest scatter points around the 45 degrees line, and in this sense, it is considered as the most accurate model. To ensure the correct selection of the best model, the Taylor diagram is also used. The results demonstrate that the closest point to the reference point is related to the ORELM method. Therefore, to predict the groundwater level in the whole plain, instead of using the complex GMS model with a very large volume of data and also the very time-consuming process of calibration and verification, the ORELM model can be used with confidence. This approach greatly helps researchers to predict groundwater level variations in dry and wet years using artificial intelligence with high accuracy instead of numerical models with complex and time-consuming structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cat发布了新的文献求助10
2秒前
Pooh完成签到,获得积分10
2秒前
Pearl完成签到,获得积分10
2秒前
sarah完成签到,获得积分10
3秒前
FashionBoy应助浅学者采纳,获得10
4秒前
忐忑的jack完成签到,获得积分10
4秒前
Joie发布了新的文献求助10
4秒前
jweng发布了新的文献求助10
4秒前
科研通AI6应助林1采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Kaelin完成签到,获得积分10
5秒前
CodeCraft应助crane采纳,获得10
5秒前
Rei完成签到 ,获得积分10
5秒前
芋圆葡萄发布了新的文献求助30
6秒前
小说家完成签到,获得积分10
8秒前
8秒前
8秒前
bkagyin应助开心薯片采纳,获得10
9秒前
损伤完成签到,获得积分20
9秒前
肖敏发布了新的文献求助30
10秒前
云影cns发布了新的文献求助10
12秒前
项初蝶完成签到 ,获得积分10
12秒前
12秒前
13秒前
观潮完成签到,获得积分10
13秒前
木樨完成签到,获得积分10
14秒前
15秒前
沙漠水发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
大王张必成完成签到,获得积分10
20秒前
20秒前
华仔应助火星上的冰岚采纳,获得10
21秒前
21秒前
21秒前
Lee关闭了Lee文献求助
21秒前
wqty完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583326
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765758
捐赠科研通 4609337
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498393
关于科研通互助平台的介绍 1467043