Predicting stress, strain and deformation fields in materials and structures with graph neural networks

计算机科学 人工神经网络 非线性系统 人工智能 图形 格子(音乐) 理论计算机科学 物理 声学 量子力学
作者
M Maurizi,Chao Gao,Filippo Berto
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:71
标识
DOI:10.1038/s41598-022-26424-3
摘要

Abstract Developing accurate yet fast computational tools to simulate complex physical phenomena is a long-standing problem. Recent advances in machine learning have revolutionized the way simulations are approached, shifting from a purely physics- to AI-based paradigm. Although impressive achievements have been reached, efficiently predicting complex physical phenomena in materials and structures remains a challenge. Here, we present an AI-based general framework, implemented through graph neural networks, able to learn complex mechanical behavior of materials from a few hundreds data. Harnessing the natural mesh-to-graph mapping, our deep learning model predicts deformation, stress, and strain fields in various material systems, like fiber and stratified composites, and lattice metamaterials. The model can capture complex nonlinear phenomena, from plasticity to buckling instability, seemingly learning physical relationships between the predicted physical fields. Owing to its flexibility, this graph-based framework aims at connecting materials’ microstructure, base materials’ properties, and boundary conditions to a physical response, opening new avenues towards graph-AI-based surrogate modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓦然回首完成签到,获得积分10
3秒前
orixero应助DrH9361采纳,获得10
3秒前
ding应助淡然的大碗采纳,获得10
3秒前
Ava应助12采纳,获得10
5秒前
山谷完成签到,获得积分10
5秒前
陈十八应助zzzggc采纳,获得10
5秒前
xiaoxiao1992完成签到,获得积分20
6秒前
小蛇玩完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
桐桐应助Summer采纳,获得10
9秒前
正直的冰棍完成签到,获得积分10
9秒前
星辰大海应助酷酷学采纳,获得10
10秒前
科研通AI5应助山谷采纳,获得10
10秒前
11秒前
12秒前
贾克斯发布了新的文献求助10
12秒前
ccc完成签到,获得积分10
12秒前
刘斌发布了新的文献求助10
12秒前
13秒前
13秒前
小星星668发布了新的文献求助10
13秒前
ccc发布了新的文献求助10
14秒前
彭于晏应助404采纳,获得10
14秒前
科研通AI5应助粉条采纳,获得10
16秒前
魔幻若血完成签到,获得积分10
16秒前
无问西东完成签到,获得积分0
16秒前
18秒前
12发布了新的文献求助10
18秒前
SciGPT应助贾克斯采纳,获得10
18秒前
18秒前
111111完成签到,获得积分10
18秒前
19秒前
22秒前
bkagyin应助学术小白采纳,获得20
23秒前
24秒前
24秒前
24秒前
华仔应助风清扬采纳,获得10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387384
关于积分的说明 10549216
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712430
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774767