PVASS-MDD: Predictive Visual-Audio Alignment Self-Supervision for Multimodal Deepfake Detection

计算机科学 视听 人工智能 模态(人机交互) 机器学习 模式识别(心理学) 多媒体
作者
Yang Yu,Xiaolong Liu,Rongrong Ni,Siyuan Yang,Yao Zhao,Alex C. Kot
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 6926-6936 被引量:28
标识
DOI:10.1109/tcsvt.2023.3309899
摘要

Deepfake techniques can forge the visual or audio signals in the video, which leads to inconsistencies between visual and audio (VA) signals. Therefore, multimodal detection methods expose deepfake videos by extracting VA inconsistencies. Recently, deepfake technology has started VA collaborative forgery to obtain more realistic deepfake videos, which poses new challenges for extracting VA inconsistencies. Recent multimodal detection methods propose to first extract natural VA correspondences in real videos in a self-supervised manner, and then use the learned real correspondences as targets to guide the extraction of VA inconsistencies in the subsequent deepfake detection stage. However, the inherent VA relations are difficult to extract due to the modality gap, which leads to the limited auxiliary performance of the aforementioned self-supervised methods. In this paper, we propose Predictive Visual-audio Alignment Self-supervision for Multimodal Deepfake Detection (PVASS-MDD), which consists of PVASS auxiliary and MDD stages. In the PVASS auxiliary stage in real videos, we first devise a three-stream network to associate two augmented visual views with corresponding audio clues, leading to explore common VA correspondences based on cross-view learning. Secondly, we introduce a novel cross-modal predictive align module for eliminating VA gaps to provide inherent VA correspondences. In the MDD stage, we propose to the auxiliary loss to utilize the frozen PVASS network to align VA features of real videos, to better assist multimodal deepfake detector for capturing subtle VA inconsistencies. We conduct extensive experiments on existing widely used and latest multimodal deepfake datasets. Our method obtains a significant performance improvement compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
豆豆完成签到,获得积分10
2秒前
wanci应助请不要叽叽喳喳采纳,获得10
2秒前
张景茹完成签到,获得积分10
2秒前
3秒前
3秒前
伊呀呀呀完成签到,获得积分10
3秒前
ounceee发布了新的文献求助10
4秒前
qkyzzs发布了新的文献求助20
5秒前
斧王完成签到,获得积分10
5秒前
大西瓜发布了新的文献求助10
6秒前
唯伊发布了新的文献求助10
6秒前
6秒前
狂野宛丝完成签到,获得积分10
7秒前
张景茹发布了新的文献求助10
7秒前
11发布了新的文献求助10
7秒前
无名子完成签到 ,获得积分10
7秒前
8秒前
冯志华发布了新的文献求助10
9秒前
9秒前
可与完成签到,获得积分10
9秒前
科研通AI6应助后来采纳,获得10
10秒前
10秒前
小马甲应助一个小胖子采纳,获得10
11秒前
谨慎的糜发布了新的文献求助10
13秒前
TT发布了新的文献求助10
13秒前
13秒前
JamesPei应助火花采纳,获得10
13秒前
cjh发布了新的文献求助10
14秒前
天天完成签到,获得积分10
18秒前
孙淼发布了新的文献求助10
19秒前
20秒前
gaomeigeng应助活泼仙人掌采纳,获得10
21秒前
半夏完成签到,获得积分10
21秒前
超级的夜柳完成签到,获得积分10
21秒前
21秒前
勤劳的圆完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5411568
求助须知:如何正确求助?哪些是违规求助? 4529098
关于积分的说明 14117750
捐赠科研通 4443714
什么是DOI,文献DOI怎么找? 2438381
邀请新用户注册赠送积分活动 1430605
关于科研通互助平台的介绍 1408214