Matching vs. Individual Choice: How to Counter Regional Imbalance of Carsharing Demand

匹配(统计) 计算机科学 利润(经济学) 供求关系 水准点(测量) 运筹学 需求管理 业务 经济 微观经济学 地理 工程类 数学 大地测量学 统计 宏观经济学
作者
Nils Boysen,Dirk Briskorn,Rea Röntgen,Michael Dienstknecht
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 198-218 被引量:4
标识
DOI:10.1287/trsc.2022.0067
摘要

Among the most crucial organizational challenges of free-floating carsharing is the question how to cope with regional demand imbalance. Because users are allowed to leave a rented car anywhere in the service district, it regularly occurs that too many cars are left behind in low-demand regions whereas other regions face a demand surplus. In this paper, we consider a countermeasure that has been overlooked by previous research: an optimization-based matching of carsharing supply and demand that not only addresses the profit promised by the current matches but also targets future demand imbalance. To account for such imbalances, we define regional demand levels that specify the projected number of requested cars per region and aim to reduce the deviations of the regions’ actual car supply from these target levels. We present exact polynomial-time algorithms for this extended matching task that are suitable for real-time application on large carsharing platforms. In an extensive computational study, we compare optimization-based matching approaches with and without the consideration of demand imbalance and benchmark them with the status quo, the individual choice of carsharing users among available cars. Based on generated data with considerable demand variation among regions, our results indicate a clear advantage of our novel matching approach. In a further study based on a large carsharing data set, however, the proof of concept fails because the real-world regions are cut according to geographical characteristics instead of demand variation. To successfully relieve the strains of demand imbalance, our novel matching task thus requires a properly partitioned service district and reliable forecasts of the carsharing demands. Funding: This work was supported by the Deutsche Forschungsgemeinschaft [Grants BO 3148/8-1 and BR 3873/10-1]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0067 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwh发布了新的文献求助10
1秒前
2秒前
只狮完成签到,获得积分20
2秒前
吃不饱发布了新的文献求助10
2秒前
3秒前
凡双完成签到,获得积分10
3秒前
kk发布了新的文献求助10
3秒前
橘栀发布了新的文献求助20
4秒前
卡列林完成签到,获得积分10
4秒前
小蘑菇应助KangL采纳,获得10
4秒前
樊0905完成签到,获得积分10
5秒前
yyc完成签到,获得积分10
5秒前
风云鱼发布了新的文献求助30
5秒前
6秒前
花开四海发布了新的文献求助10
7秒前
上官若男应助松叶采纳,获得10
7秒前
10秒前
橘栀完成签到,获得积分10
10秒前
pinging发布了新的文献求助10
10秒前
11秒前
就发酵罐完成签到,获得积分10
11秒前
科研通AI6应助Gloyxtg采纳,获得10
13秒前
汉堡包应助樊0905采纳,获得10
13秒前
14秒前
kk完成签到,获得积分10
14秒前
14秒前
15秒前
17秒前
余叶发布了新的文献求助20
18秒前
18秒前
汉堡包应助安静曼云采纳,获得10
19秒前
CipherSage应助嘻嘻哈哈采纳,获得10
20秒前
zzzzzz发布了新的文献求助10
20秒前
耿耿发布了新的文献求助10
20秒前
李健应助包容的瑾瑜采纳,获得10
20秒前
我爱科研科研也爱我完成签到,获得积分10
21秒前
KangL发布了新的文献求助10
21秒前
21秒前
Xiaoyan发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643668
求助须知:如何正确求助?哪些是违规求助? 4761770
关于积分的说明 15021824
捐赠科研通 4801962
什么是DOI,文献DOI怎么找? 2567166
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484449