带宽(计算)
自由光谱范围
微波食品加热
光学
宽带
谐振器
光学滤波器
带通滤波器
光子学
材料科学
中心频率
光电子学
物理
电信
计算机科学
作者
Weifeng Zhang,Haoyan Liu,Yihao Cheng,Hong Xu,Bin Wang
出处
期刊:Optics Express
[The Optical Society]
日期:2023-11-13
卷期号:31 (25): 42651-42651
被引量:4
摘要
Photonic-assisted microwave frequency identification has been extensively studied in civil and defense applications due to its distinct features including wide frequency coverage, large instantaneous bandwidth, high frequency resolution, and immunity to electromagnetic interference. In this paper, we propose and experimentally demonstrate an approach for high-resolution frequency identification of wideband microwave signals by linearly mapping the microwave frequencies to the time delays of the optical pulses. In the proposed system, an ultrahigh-Q hybrid optical filter is a key component, which consists of a fiber ring resonator (FRR) and a silicon photonic racetrack micro-ring resonator (MRR). The FRR has an ultra-narrow bandwidth of 7.6 MHz and a small free spectral range (FSR) of 292.5 MHz, while the MRR has a bandwidth of 167.5 MHz and a large FSR of 73.8 GHz. By precisely matching the resonance wavelengths of the FRR and the MRR, a hybrid optical filter with an ultrahigh Q-factor and a large FSR is realized, which is much preferred to realizing a high resolution and a wide measurement range for microwave frequency identification. An experiment is performed and different types of microwave signals are identified. A frequency measurement range as broad as 33 GHz from 2 to 35 GHz, a frequency resolution as high as 15 MHz and a measurement accuracy as high as 5.6 MHz are experimentally demonstrated. The proposed frequency identification system holds great advantages including high frequency resolution, high measurement accuracy, and wide frequency coverage, which can find extensive applications in next-generation electronic warfare and cognitive radio systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI