Noisy-Correspondence Learning for Text-to-Image Person Re-identification

鉴定(生物学) 人工智能 计算机科学 图像(数学) 自然语言处理 模式识别(心理学) 计算机视觉 生物 植物
作者
Qin Yang,Yingke Chen,Dezhong Peng,Xi Peng,Joey Tianyi Zhou,Hu Peng
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2308.09911
摘要

Text-to-image person re-identification (TIReID) is a compelling topic in the cross-modal community, which aims to retrieve the target person based on a textual query. Although numerous TIReID methods have been proposed and achieved promising performance, they implicitly assume the training image-text pairs are correctly aligned, which is not always the case in real-world scenarios. In practice, the image-text pairs inevitably exist under-correlated or even false-correlated, a.k.a noisy correspondence (NC), due to the low quality of the images and annotation errors. To address this problem, we propose a novel Robust Dual Embedding method (RDE) that can learn robust visual-semantic associations even with NC. Specifically, RDE consists of two main components: 1) A Confident Consensus Division (CCD) module that leverages the dual-grained decisions of dual embedding modules to obtain a consensus set of clean training data, which enables the model to learn correct and reliable visual-semantic associations. 2) A Triplet Alignment Loss (TAL) relaxes the conventional Triplet Ranking loss with the hardest negative samples to a log-exponential upper bound over all negative ones, thus preventing the model collapse under NC and can also focus on hard-negative samples for promising performance. We conduct extensive experiments on three public benchmarks, namely CUHK-PEDES, ICFG-PEDES, and RSTPReID, to evaluate the performance and robustness of our RDE. Our method achieves state-of-the-art results both with and without synthetic noisy correspondences on all three datasets. Code is available at https://github.com/QinYang79/RDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐天大圣完成签到,获得积分10
1秒前
YANG发布了新的文献求助10
2秒前
大宝S欧D蜜完成签到,获得积分10
2秒前
3秒前
复杂黑夜发布了新的文献求助10
3秒前
4秒前
小马甲应助越宝采纳,获得10
4秒前
小王小王发布了新的文献求助10
5秒前
可莉完成签到 ,获得积分10
5秒前
橘柚完成签到 ,获得积分10
5秒前
5秒前
NexusExplorer应助被窝采纳,获得10
6秒前
小二郎应助曾经的鸡翅采纳,获得10
6秒前
8秒前
云泽发布了新的文献求助10
9秒前
冷艳紫南发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
HXX完成签到,获得积分20
12秒前
Orange应助卡拉蹦蹦采纳,获得10
13秒前
科研通AI5应助摔摔77呀采纳,获得10
13秒前
啊啊啊发布了新的文献求助10
14秒前
15秒前
16秒前
abcd_1067完成签到,获得积分10
16秒前
鱼罐罐罐头完成签到,获得积分10
16秒前
钮续完成签到,获得积分10
17秒前
17秒前
17秒前
不要芫荽完成签到,获得积分10
18秒前
可爱完成签到 ,获得积分10
18秒前
20秒前
冷艳紫南完成签到,获得积分10
20秒前
hxy123完成签到,获得积分10
20秒前
dxurp发布了新的文献求助30
21秒前
英俊的铭应助钮续采纳,获得10
21秒前
不要芫荽发布了新的文献求助10
22秒前
被窝完成签到,获得积分20
22秒前
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398332
捐赠科研通 3076344
什么是DOI,文献DOI怎么找? 1689769
邀请新用户注册赠送积分活动 813254
科研通“疑难数据库(出版商)”最低求助积分说明 767599