Ambient Vibration Prediction of a Cable-Stayed Bridge by an Artificial Neural Network

桥(图论) 人工神经网络 振动 结构工程 计算机科学 工程类 声学 人工智能 生物 物理 解剖
作者
Melissa De Iuliis,Cecilia Rinaldi,Francesco Potenza,Vincenzo Gattulli,Thibaud Toullier,Jean Dumoulin
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 242-257 被引量:1
标识
DOI:10.1201/9781003306924-10
摘要

Large-scale civil infrastructures play a vital role in society, as they ensure smooth transportation and improve the quality of people's daily life. However, they are exposed to several continuous external dynamic actions such as wind loads, vehicular loads, and environmental changes. Interaction assessment between external actions and civil structures is becoming more challenging due to the rapid development of transportation. Data-driven models have lately emerged as a viable alternative to traditional model-based techniques. They provide different advantages: timely damage detection, prediction of structural behaviors, and suggestions for optimal maintenance strategies. This chapter aims to describe the advantages and characteristics of data-driven techniques to predict the dynamic behavior of civil structures through an artificial neural network (ANN). The applicability and effectiveness of the proposed approach are supported by the results achieved by processing the measurements coming from a monitoring system installed on a cable-stayed bridge (the Éric Tabarly Bridge in Nantes, France). Accelerations recorded by a network of 16 mono-axial accelerometers and Nantes Airport weather data acquired with the observation platform of the METAR (Meteorological Terminal Aviation Routine Weather Report) Station Network have been used as training to predict the structural response and to statistically characterize the behavior through a nonlinear autoregressive (NAR) prediction network. The performance has been evaluated through statistical analysis of the error between the measured and predicted values also related to both environmental conditions and the number of signals. The results show that the forecast network could be useful to detect the trigger of anomalies, hidden in the dynamic response of the bridge, at a low computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助八二年葡萄糖采纳,获得10
1秒前
luanzh完成签到,获得积分10
1秒前
文艺的幻露完成签到,获得积分10
2秒前
2秒前
公章在我手里完成签到,获得积分20
2秒前
frost完成签到,获得积分10
3秒前
深情荆完成签到,获得积分20
3秒前
李xue发布了新的文献求助10
4秒前
vicky完成签到,获得积分10
4秒前
DAYTOY完成签到,获得积分10
4秒前
Duktig发布了新的文献求助10
4秒前
纯真玉兰完成签到 ,获得积分10
5秒前
一个刚刚完成签到,获得积分10
5秒前
yxy完成签到,获得积分10
5秒前
jimmy完成签到,获得积分10
5秒前
UPUP发布了新的文献求助10
5秒前
科研通AI2S应助ark861023采纳,获得10
5秒前
动听煎饼完成签到 ,获得积分10
6秒前
孤独的沛槐完成签到,获得积分10
6秒前
馋嘴小糖完成签到,获得积分10
6秒前
简单冰巧完成签到 ,获得积分10
6秒前
YJL发布了新的文献求助10
7秒前
动听冰淇淋完成签到,获得积分10
7秒前
8秒前
雪白的饼干完成签到 ,获得积分10
8秒前
马士全发布了新的文献求助10
8秒前
yxy发布了新的文献求助10
8秒前
gjh完成签到,获得积分20
8秒前
JiangSir完成签到,获得积分10
9秒前
9秒前
77发布了新的文献求助10
9秒前
贪玩晶完成签到 ,获得积分10
9秒前
所所应助言言采纳,获得10
10秒前
知不道完成签到,获得积分10
10秒前
plant完成签到,获得积分10
11秒前
科目三应助文静的翠安采纳,获得10
11秒前
优秀白曼完成签到 ,获得积分10
11秒前
11秒前
zzz完成签到,获得积分20
12秒前
拼搏的盼望完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804522
求助须知:如何正确求助?哪些是违规求助? 3349389
关于积分的说明 10344195
捐赠科研通 3065478
什么是DOI,文献DOI怎么找? 1683099
邀请新用户注册赠送积分活动 808713
科研通“疑难数据库(出版商)”最低求助积分说明 764675