A novel framework of multimodal medical image fusion using adaptive NSST and optimized deep learning approach

图像融合 人工智能 计算机科学 深度学习 剪切波 图像(数学) 计算机视觉 启发式 模式识别(心理学) 操作系统
作者
K. Vanitha,D. Satyanarayana,M. N. Giriprasad
出处
期刊:The Imaging Science Journal [Taylor & Francis]
卷期号:: 1-28 被引量:1
标识
DOI:10.1080/13682199.2023.2241793
摘要

ABSTRACTMultimodal medical image fusion plays a pivotal role in the medical and imaging industry. Existing works of deep learning method suffers from blurred texture characteristics and computing efficiency. Thus, a novel deep learning model is proposed for multimodal medical image fusion. Initially, an Adaptive Non-Subsampled Shearlet Transform (ANSST) approach is developed for decomposing the images, where the filter coefficient is optimized by Hybrid Water Strider-Dingo Optimization (HWS-DOX). The fusion of the high sub-bands of source image 1 and high sub-bands of source image 2 is done by an Optimized Deep Neural Network (ODNN). Then, the lower sub-bands of source image 1 and lower sub-bands of source image 2 will be fused through a weighted averaging scheme. Finally, the final fused images are attained by applying the inverse ANSST. Thus, the performance of recommended module is compared over classical heuristics and various transform methods.KEYWORDS: Medical image fusionadaptive non-subsampled shearlet transformwater strider optimizationdingo optimizationhybrid water strider-dingo optimizationoptimized deep neural network Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsK. VanithaK. Vanitha is a research scholar in the department of ECE, JNTUA, Ananthapur, A.P, India. She received her B.Tech degree in 2010, M.Tech degree in 2013. Her areas of interest includes Biomedical image processing, optimization techniques and Soft computing techniques. She has published several papers in national and international journals. She is a life-time member in ISTE.D. SatyanarayanaDr. D. Satyanarayana received his B.Tech degree from Bharathiar University, Coimbatore, Tamil Nadu in 1992, M.Tech from J.N.T University, Hyderabad, in 1999, and Ph.D. from J.N.T University, Hyderabad in 2009. Currently, he is Controller of Examinations & Professor in the Dept. of ECE at RGMCET, Nandyal. His research areas are Speech, Signal and Image processing.M. N. GiriPrasadDr. M. N. Giri Prasad received his B.Tech degree from JNTU College of Engineering, Anantapur, A.P, India in 1982, M.Tech from Sri Venkateswara University, Tirupati, in 1994, and Ph.D. from J.N.T University, Hyderabad in 2003. Currently, he is the Director of Admissions & Professor in the Dept. of ECE at JNTUA, Anantapur. His research areas are Signal and Image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jjy发布了新的文献求助20
1秒前
yourenpkma123完成签到,获得积分10
2秒前
超级亿先发布了新的文献求助10
2秒前
SciGPT应助哈哈采纳,获得10
3秒前
4秒前
浮游应助从容晓凡采纳,获得10
5秒前
积极的千雁完成签到,获得积分10
6秒前
6秒前
LeezZZZ发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
9秒前
yyy完成签到,获得积分10
9秒前
彩色不斜完成签到 ,获得积分10
10秒前
爆米花应助风语村采纳,获得10
10秒前
大方元风发布了新的文献求助10
10秒前
10秒前
Gcia完成签到 ,获得积分10
11秒前
琳666发布了新的文献求助10
12秒前
仵一发布了新的文献求助10
13秒前
清爽语柳发布了新的文献求助30
13秒前
小怪兽发布了新的文献求助10
14秒前
脑洞疼应助孝顺的航空采纳,获得10
15秒前
kzf丶bryant发布了新的文献求助10
16秒前
风语村发布了新的文献求助10
20秒前
CVI完成签到,获得积分10
20秒前
健壮涵柳发布了新的文献求助10
21秒前
21秒前
Jiakopa发布了新的文献求助10
22秒前
馨妈完成签到 ,获得积分10
22秒前
nonono完成签到,获得积分10
22秒前
chenchen完成签到 ,获得积分10
23秒前
Propitious完成签到 ,获得积分10
23秒前
25秒前
changping应助坚定的小海豚采纳,获得10
28秒前
哈迪发布了新的文献求助10
28秒前
小杭76应助yang采纳,获得10
29秒前
陈平安完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312