膜
聚合物
合成膜
材料科学
高分子化学
化学工程
质子交换膜燃料电池
燃料电池
聚合物混合物
基础(拓扑)
质子
高分子科学
化学
复合材料
共聚物
数学分析
生物化学
物理
数学
量子力学
工程类
作者
Chun Yik Wong,Kenji Miyatake,Lin Guo,Fanghua Liu,Xian Fang,Ahmed Mohamed Ahmed Mahmoud,Vikrant Yadav,Xiaofeng Hao,Shuanjin Wang,Yuezhong Meng
标识
DOI:10.1002/sstr.202500323
摘要
The development of high‐performance polymer electrolyte membrane is crucial for advancing high‐temperature proton exchange fuel cells (HT‐PEMFCs). For this purpose, a branched Tröger's base polymer (TPB‐BTB) is designed and synthesized from 1,3,5‐tri(4‐aminophenyl)benzene (TPB), o ‐tolidine, and dimethoxymethane in trifluoroacetic acid, enabling a superacid‐catalyzed polymerization reaction to proceed under mild conditions. The resulting TPB‐BTP is integrated with a chemically stable and mechanically robust quaternized polymer (QPAF‐4) to form QPAF‐4/TPB‐BTB blend membranes. Structural characterization via X‐ray diffractometer (XRD) and fourier transform infrared (FTIR) spectroscopy confirms strong interpolymer interactions, contributing to enhanced membrane integrity. The blend membranes exhibited higher phosphoric acid (PA) absorption and better thermal and mechanical stability than those of the parent QPAF‐4 membrane. Furthermore, a PA‐doped blend membrane with the optimized composition (QPAF‐4/TPB‐BTB10) demonstrates nearly twofold the proton conductivity (32.3 mS cm −1 ) compared to a PA‐doped QPAF‐4 membrane (15.1 mS cm −1 ) under harsh conditions (5% relative humidity and 120 °C). A PA‐doped QPAF‐4/TPB‐BTB10 membrane achieves a maximum peak power density of 721.6 mW cm −2 at 160 °C and a current density of 1.95 A cm −2 , outperforming PA‐doped QPAF‐4 (683.0 mW cm −2 at 1.81 A cm −2 ) without backpressure, highlighting its great promise for HT‐PEMFCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI