Manipulating Plasmon-Generated Hot Carriers for Photocatalysis

光催化 等离子体子 纳米晶 表面等离子共振 载流子 等离子太阳电池 纳米技术 等离子纳米粒子 表面等离子体子 纳米颗粒 材料科学 化学 光电子学 能量转换效率 聚合物太阳能电池 催化作用 生物化学
作者
Yue Hu,Namodhi Wijerathne,Md. Yeasin Pabel,Dinushika Kotudura Arachchige,Wei David Wei
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.5c00313
摘要

ConspectusLocalized surface plasmon resonance (LSPR), a distinctive optoelectronic property of plasmonic nanocrystals, arises from the collective oscillation of conduction electrons in resonance with incident light. The excitation of LSPR confines incident light near the surface of plasmonic nanocrystals and amplifies the local electric field. Moreover, the frequency of LSPR is highly tunable in the visible and near-IR regions, allowing plasmonic nanocrystals to efficiently absorb and scatter light across the solar spectrum. Such a property makes plasmonic nanocrystals promising candidates for utilizing solar irradiation to drive chemical reactions, a process known as plasmonic photocatalysis. Upon the resonant excitation of LSPR, energetic hot electrons and holes are generated via the nonradiative decay of LSPR in plasmonic nanocrystals. Those hot carriers can be transferred into the molecular orbitals of adsorbed reactants, enabling chemical transformations at the surface of nanocrystals. However, during the charge transport within plasmonic nanocrystals, hot carriers rapidly relax into lower-energy states. As a result, their energy is often dissipated to the lattice as heat, increasing the local temperature rather than directly contributing to chemical reactions─posing a fundamental challenge to achieving efficient solar-to-chemical energy conversion using plasmonic nanocrystals.To address this challenge, our group has developed multiple strategies to control the lifetime, energy level, and spatial distribution of plasmon-generated hot carriers to enhance the photocatalytic activity of Au nanocrystals. To extend the lifetime of hot carriers to match the slow kinetics of chemical reactions, Au nanocrystals were attached to an n-type semiconductor to form a heterojunction. This structure was found to prolong the lifetime of hot electrons through efficient spatial separation of hot electrons and holes, facilitated by the Schottky barrier at the metal/semiconductor interface. In parallel, decorating Au nanocrystals with redox-active molecules was shown to extend the lifetime of hot holes. Those hot holes were chemically stabilized and trapped within the bonds of the redox-active species, allowing them to participate in subsequent chemical reactions. Furthermore, a direct correlation between the activity of hot-electron-driven reduction reactions and the size of plasmonic nanocrystals, as well as between hot-hole-driven oxidation reactions and the wavelength of incident light, was established. Those observations demonstrated that energy levels of hot carriers involved in chemical reactions can be manipulated by tuning the size of nanocrystals and the wavelength of light. Moreover, positively charged molecules with facet-selective adsorption on Au nanocrystals were found to stabilize the plasmon-generated hot electrons, enabling control over the spatial distribution of hot carriers. Manipulating plasmon-generated hot carriers not only enhances the kinetics of plasmon-driven chemical reactions─such as oxygen evolution, hydrogen evolution, and nanocrystal growth─but also introduces new reaction pathways in those chemical processes, paving the way for highly efficient plasmonic photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
浮游应助舒适的追命采纳,获得10
3秒前
可爱小熊猫完成签到,获得积分10
4秒前
4秒前
5秒前
无辜书白完成签到 ,获得积分10
6秒前
Y-CityU发布了新的文献求助10
7秒前
7秒前
王哥发布了新的文献求助30
9秒前
闪闪落雁发布了新的文献求助10
10秒前
QQQQ完成签到,获得积分10
10秒前
11秒前
11秒前
阳光发布了新的文献求助10
13秒前
科研通AI6应助graffitti采纳,获得10
14秒前
111发布了新的文献求助10
15秒前
杨杨杨发布了新的文献求助10
15秒前
liyun发布了新的文献求助10
20秒前
小蘑菇应助科研小白兔采纳,获得10
22秒前
22秒前
CipherSage应助接受所有饼干采纳,获得10
26秒前
科研通AI2S应助王哥采纳,获得30
27秒前
发SCI的小张完成签到,获得积分10
27秒前
111完成签到,获得积分10
27秒前
Jasper应助liyun采纳,获得10
28秒前
33秒前
34秒前
34秒前
graffitti发布了新的文献求助10
35秒前
37秒前
完美世界应助SYBH采纳,获得10
38秒前
40秒前
馆长应助Daniel采纳,获得30
45秒前
情怀应助guan采纳,获得10
45秒前
NexusExplorer应助ChenGY采纳,获得10
46秒前
48秒前
伽古拉40k完成签到,获得积分10
48秒前
隐形曼青应助朴实凝雁采纳,获得10
50秒前
传奇3应助可靠的寒风采纳,获得10
51秒前
浮浮世世发布了新的文献求助10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4810643
求助须知:如何正确求助?哪些是违规求助? 4124069
关于积分的说明 12760674
捐赠科研通 3860293
什么是DOI,文献DOI怎么找? 2125015
邀请新用户注册赠送积分活动 1146673
关于科研通互助平台的介绍 1040053