Functionalized Nanofinger Enhances Pretrained Language Model Performance for Ultrafast Early Warning of Heart Attacks

超短脉冲 计算机科学 预警系统 计算机安全 人工智能 物理 电信 光学 激光器
作者
Hongming Zhang,Zerui Liu,Heming Sun,Yunxiang Wang,Ting-Hao Hsu,Sushmit Hossain,Nishat Tasnim Hiramony,Himaddri Shakhar Roy,N. Zhou,Matthew Tan,Enwen Liu,Yihao Wang,Fanxin Liu,Wei Wu
出处
期刊:ACS applied bio materials [American Chemical Society]
卷期号:8 (8): 6970-6980
标识
DOI:10.1021/acsabm.5c00699
摘要

Heart attacks are the leading cause of death worldwide, which means an accurate early warning system is needed. Traditional methods, such as an electrocardiogram (ECG) and blood test, usually require expert interpretation and take more than 15 min to obtain diagnostic results, which often results in delayed treatment. Our previous work [Liu, Z. Small 2023, 19(2), e2204719] developed a functionalized nanofinger platform utilizing Raman spectroscopy and machine learning (ML) to detect heart attack-related biomarkers, brain natriuretic peptide (BNP) in blood samples, achieving a high true positive rate (98%) but with limited true negative accuracy. This study enhances diagnostic accuracy by integrating the AI-driven analysis of patient symptoms with blood biomarker analysis. We incorporate additional patient features, including current and historical symptoms. We fused the biomarker test results, which is a one-dimensional probability vector ranging from 0 to 1, with patient symptom description as part of the sentence, which is then processed by a fine-tuned pretrained language model to generate embeddings and passed to a classification head for diagnosis. For data augmentation, we employ generative models to synthesize realistic patient cases, expanding the data set and improving model robustness. Our approach achieves an accuracy rate of 99.19%, outperforming conventional diagnostic methods. Given the difficulty of obtaining sufficient clinical data, this study presents a scalable AI-based solution for early-stage heart attack detection by integrating functionalized nanofinger-based blood analysis with large language models (LLMs) and leveraging generative models to synthesize realistic patient cases for data augmentation. This approach significantly advances the automation of diagnosis in modern healthcare and can be readily adapted to other disease detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wjj完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
QIANLI完成签到,获得积分10
3秒前
3秒前
彭佳乐发布了新的文献求助10
3秒前
SciGPT应助孙行行采纳,获得10
3秒前
4秒前
搞怪的萃完成签到,获得积分10
4秒前
科研通AI6应助123采纳,获得10
4秒前
脑洞疼应助persist采纳,获得30
4秒前
科研通AI6应助houxiyang采纳,获得10
4秒前
5秒前
5秒前
arizaki7应助Hey采纳,获得10
5秒前
5秒前
妖魔鬼怪快离开完成签到,获得积分10
6秒前
三色完成签到,获得积分10
6秒前
江海发布了新的文献求助10
6秒前
JamesPei应助麻薯麻薯采纳,获得10
6秒前
passerby发布了新的文献求助10
6秒前
dwclongy完成签到,获得积分10
7秒前
kkkk发布了新的文献求助10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
arizaki7应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
第八号当铺完成签到,获得积分10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
arizaki7应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
段盼兰应助科研通管家采纳,获得20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546197
求助须知:如何正确求助?哪些是违规求助? 4632069
关于积分的说明 14624703
捐赠科研通 4573763
什么是DOI,文献DOI怎么找? 2507809
邀请新用户注册赠送积分活动 1484423
关于科研通互助平台的介绍 1455707