材料科学
纤维素
海水
锌
高分子科学
化学工程
纳米技术
复合材料
冶金
海洋学
地质学
工程类
作者
Yanying Dong,Wenjie Fan,Xingjie Wang,Haisheng Huang,Yue Zhu,Jingwei Chen,Weiqian Tian,Yunhui Huang,Jingyi Wu
标识
DOI:10.1002/adfm.202513685
摘要
Abstract Natural seawater electrolytes enable cost‐effective deployment of aqueous zinc (Zn) ion batteries in maritime environments but face intensified chloride ions (Cl − ) ‐induced corrosion and water‐induced side reaction challenges. Here, an 18 µm‐thick cellulose separator with negative surface charges is developed and gradient hydrophobicity to simultaneously block Cl − penetration and reduce interfacial water activity. The hydrophobicity gradient establishes a stepwise desolvation pathway for solvated Zn ions (Zn 2+ ), forming a high aggregate electrolyte that suppresses parasitic hydrogen evolution, while the electrostatic shielding effect arising from negatively charged functional groups synergistically repels Cl − and homogenizes Zn 2+ flux. Consequently, Zn||Zn symmetric cells achieve record stability in natural seawater electrolyte, sustaining 2900 h at 1 mA cm −2 /1 mAh cm −2 and 1300 h under 50% depth of discharge. Paired with a thin Zn anode (20 µm) and high‐loading NaV 3 O 8 ·1.5H 2 O cathode, full cells deliver a volumetric energy density of 233.1 Wh L −1 at a practical N/P of 2.3, outperforming the majority of the reported aqueous Zn batteries. This work presents a critical advance toward offshore energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI