SeG-SR: Integrating Semantic Knowledge Into Remote Sensing Image Super-Resolution via Vision-Language Model

计算机科学 遥感 分辨率(逻辑) 语义学(计算机科学) 人工智能 计算机视觉 自然语言处理 地质学 程序设计语言
作者
Bowen Chen,Keyan Chen,Mohan Yang,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-15
标识
DOI:10.1109/tgrs.2025.3612420
摘要

High-resolution (HR) remote sensing imagery plays a vital role in a wide range of applications, including urban planning and environmental monitoring. However, due to limitations in sensors and data transmission links, the images acquired in practice often suffer from resolution degradation. Remote Sensing Image Super-Resolution (RSISR) aims to reconstruct HR images from low-resolution (LR) inputs, providing a cost-effective and efficient alternative to direct HR image acquisition. Existing RSISR methods primarily focus on low-level characteristics in pixel space, while neglecting the high-level understanding of remote sensing scenes. This may lead to semantically inconsistent artifacts in the reconstructed results. Motivated by this observation, our work aims to explore the role of high-level semantic knowledge in improving RSISR performance. We propose a Semantic-Guided Super-Resolution framework, SeG-SR, which leverages Vision-Language Models (VLMs) to extract semantic knowledge from input images and uses it to guide the super resolution (SR) process. Specifically, we first design a Semantic Feature Extraction Module (SFEM) that utilizes a pretrained VLM to extract semantic knowledge from remote sensing images. Next, we propose a Semantic Localization Module (SLM), which derives a series of semantic guidance from the extracted semantic knowledge. Finally, we develop a Learnable Modulation Module (LMM) that uses semantic guidance to modulate the features extracted by the SR network, effectively incorporating high-level scene understanding into the SR pipeline. We validate the effectiveness and generalizability of SeG-SR through extensive experiments: SeG-SR achieves state-of-the-art performance on two datasets and consistently delivers performance improvements across various SR architectures. Codes can be found at https://github.com/Mr-Bamboo/SeG-SR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗磬发布了新的文献求助10
刚刚
刚刚
3秒前
科研通AI6应助Jinqiang采纳,获得10
3秒前
Gys072519发布了新的文献求助10
3秒前
深情映冬发布了新的文献求助10
4秒前
ppsweek发布了新的文献求助30
5秒前
到旷野上完成签到,获得积分10
6秒前
6秒前
6秒前
嘉子完成签到,获得积分10
7秒前
7秒前
灵巧夏彤完成签到 ,获得积分10
8秒前
阿玉发布了新的文献求助10
8秒前
深情映冬完成签到,获得积分20
8秒前
9秒前
Zz发布了新的文献求助10
9秒前
ljq完成签到,获得积分0
9秒前
10秒前
夜色下啖一口茶完成签到,获得积分10
11秒前
wwbb366916666完成签到 ,获得积分10
11秒前
背后思卉发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
十尾羊完成签到,获得积分10
12秒前
12秒前
不安愚志完成签到 ,获得积分10
12秒前
13秒前
ay发布了新的文献求助10
13秒前
15秒前
王SQ应助Maestro_S采纳,获得100
17秒前
19秒前
果称完成签到,获得积分10
19秒前
科研通AI6应助chamberlain采纳,获得10
20秒前
20秒前
ddlm发布了新的文献求助10
20秒前
赘婿应助King采纳,获得10
20秒前
20秒前
Zz完成签到,获得积分10
21秒前
21秒前
义气以彤发布了新的文献求助10
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445854
求助须知:如何正确求助?哪些是违规求助? 4554996
关于积分的说明 14249675
捐赠科研通 4477381
什么是DOI,文献DOI怎么找? 2453261
邀请新用户注册赠送积分活动 1444017
关于科研通互助平台的介绍 1420008