亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiscale Global Context Network for Semantic Segmentation of High-Resolution Remote Sensing Images

计算机科学 编码器 分割 卷积神经网络 人工智能 变压器 背景(考古学) 数据挖掘 模式识别(心理学) 量子力学 生物 操作系统 物理 古生物学 电压
作者
Qiaolin Zeng,Jingxiang Zhou,Jinhua Tao,Liangfu Chen,Xuerui Niu,Yumeng Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:10
标识
DOI:10.1109/tgrs.2024.3393489
摘要

Semantic segmentation of high-resolution remote sensing images (HRSIs) is a challenging task because objects in HRSIs usually have great scale variance and appearance variance. Although deep convolutional neural networks (DCNNs) have been widely applied in the semantic segmentation of HRSIs, they have inherent limitations in capturing global context. Attention mechanisms and transformer can effectively model long-range dependencies, but they often result in high computational costs when being applied to process HRSIs. In this article, an encoder-decoder network (MSGCNet) is proposed to fully and efficiently model multiscale context and long-range dependencies of HRSIs. Specifically, the multiscale interaction (MSI) module employs an efficient cross-attention to facilitate interaction among multiscale features of the encoder, which bridges the semantic gap between high- and low-level features and introduces more scale information to the network. In order to efficiently model long-range dependencies in both spatial and channel dimensions, the transformer-based decoder block (TBDB) implements window-based efficient multihead self-attention (W-EMSA) and enables interactions cross windows. Furthermore, to further integrate the global context generated by TBDB, the scale-aware fusion (SAF) module is proposed to deeply supervise the decoder, which iteratively fuses hierarchical features through spatial attention. As demonstrated by both quantitative and qualitative experimental results on two publicly available datasets, the proposed MSGCNet exhibits superior performance compared to currently popular methods. The code will be available at http://github.com/JingxiangZhou/MSGCNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发SCI完成签到,获得积分10
1秒前
养乐多敬你完成签到 ,获得积分10
1秒前
bkagyin应助精明冰蓝采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
小小小白应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
3秒前
加菲丰丰举报求助违规成功
9秒前
香蕉诗蕊举报求助违规成功
9秒前
哈基米德举报求助违规成功
9秒前
9秒前
9秒前
绿绿完成签到,获得积分10
12秒前
加菲丰丰举报求助违规成功
14秒前
秀丽小猫咪举报求助违规成功
14秒前
kingwill举报求助违规成功
14秒前
14秒前
绿绿发布了新的文献求助10
15秒前
17秒前
sss完成签到 ,获得积分10
17秒前
18秒前
米妮完成签到,获得积分10
18秒前
快乐的晗完成签到,获得积分10
20秒前
纯真的柔发布了新的文献求助30
23秒前
23秒前
虚化完成签到,获得积分10
24秒前
24秒前
加菲丰丰举报求助违规成功
26秒前
秀丽小猫咪举报求助违规成功
26秒前
哈基米德举报求助违规成功
26秒前
26秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346