MMSG-DTA: A Multimodal, Multiscale Model Based on Sequence and Graph Modalities for Drug-Target Affinity Prediction

稳健性(进化) 计算机科学 图形 机器学习 药物发现 人工智能 数据挖掘 模式识别(心理学) 化学 理论计算机科学 生物信息学 生物 生物化学 基因
作者
Jiahao Xu,Lei Ci,Bo Zhu,Guanhua Zhang,Linhua Jiang,Shixin Ye‐Lehmann,Wei Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 981-996 被引量:3
标识
DOI:10.1021/acs.jcim.4c01828
摘要

Drug-Target Affinity (DTA) prediction is a cornerstone of drug discovery and development, providing critical insights into the intricate interactions between candidate drugs and their biological targets. Despite its importance, existing methodologies often face significant limitations in capturing comprehensive global features from molecular graphs, which are essential for accurately characterizing drug properties. Furthermore, protein feature extraction is predominantly restricted to 1D amino acid sequences, which fail to adequately represent the spatial structures and complex functional regions of proteins. These shortcomings impede the development of models capable of fully elucidating the mechanisms underlying drug-target interactions. To overcome these challenges, we propose a multimodal, multiscale model based on Sequence and Graph Modalities for Drug-Target Affinity (MMSG-DTA) Prediction. The model combines graph neural networks with Transformers to effectively capture both local node-level features and global structural features of molecular graphs. Additionally, a graph-based modality is employed to improve the extraction of protein features from amino acid sequences. To further enhance the model's performance, an attention-based feature fusion module is incorporated to integrate diverse feature types, thereby strengthening its representation capacity and robustness. We evaluated MMSG-DTA on three public benchmark data sets─Davis, KIBA, and Metz─and the experimental results demonstrate that the proposed model outperforms several state-of-the-art methods in DTA prediction. These findings highlight the effectiveness of MMSG-DTA in advancing the accuracy and robustness of drug-target interaction modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
签到发布了新的文献求助10
刚刚
1秒前
1秒前
无极微光应助犬狗狗采纳,获得20
1秒前
SciGPT应助默默善愁采纳,获得10
2秒前
puzhongjiMiQ发布了新的文献求助10
2秒前
2秒前
Avery完成签到,获得积分10
3秒前
3秒前
虾虾发布了新的文献求助30
3秒前
4秒前
4秒前
充电宝应助研究麦当当采纳,获得10
4秒前
选波发布了新的文献求助10
5秒前
7秒前
7秒前
瑶瑶完成签到,获得积分10
8秒前
8秒前
哈哈发布了新的文献求助10
9秒前
12秒前
ironsilica发布了新的文献求助10
13秒前
小二郎应助选波采纳,获得10
14秒前
ton完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
tuanzi完成签到,获得积分10
15秒前
zp发布了新的文献求助10
15秒前
上官若男应助Kaito采纳,获得10
16秒前
共享精神应助Kaito采纳,获得10
16秒前
大个应助Kaito采纳,获得10
16秒前
搜集达人应助Kaito采纳,获得10
16秒前
慕青应助Kaito采纳,获得10
16秒前
汉堡包应助Kaito采纳,获得10
16秒前
大个应助Kaito采纳,获得10
16秒前
16秒前
共享精神应助Kaito采纳,获得10
16秒前
JamesPei应助Kaito采纳,获得10
16秒前
NexusExplorer应助Kaito采纳,获得10
16秒前
WXY完成签到 ,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430727
求助须知:如何正确求助?哪些是违规求助? 4543827
关于积分的说明 14189399
捐赠科研通 4462258
什么是DOI,文献DOI怎么找? 2446490
邀请新用户注册赠送积分活动 1437891
关于科研通互助平台的介绍 1414544