控制理论(社会学)
扰动(地质)
自适应控制
机械手
计算机科学
观察员(物理)
机器人
控制工程
控制(管理)
工程类
人工智能
物理
地质学
量子力学
古生物学
作者
Jianbang Huang,Teng Cao,Zhe Zhang,Shaohua Yang
标识
DOI:10.1177/09596518241309127
摘要
This paper studies the fixed-time tracking control scheme for robot manipulators within the constraints of prescribed performance bounds (PPB). Firstly, a disturbance observer with exponential convergence performance is developed to estimate the lumped disturbances and actuator failures, a radial basis function neural network (RBFNN) is introduced to reduce the estimation error which generated by the observer. Based on prescribed performance function, an adaptive fixed-time fault-tolerant control (AFFTC) is developed using the back-stepping control framework. This approach does not necessitate complete information about the robot manipulator’s dynamic model, thereby making its implementation in practical, real-life situations more accessible. The stability of the proposed system is established via the Lyapunov criterion and the feasibility of the observer is validated.
科研通智能强力驱动
Strongly Powered by AbleSci AI