Dynamic Causal Entropy-Spatiotemporal Convolutional Network for Quality-Related Fault Diagnosis of Large-Scale Industrial Processes

计算机科学 过程(计算) 数据挖掘 卷积神经网络 异常检测 故障检测与隔离 人工智能 熵(时间箭头) 机器学习 断层(地质) 传递熵 支持向量机 数据建模 人工神经网络 因果关系(物理学) 系统动力学 动态网络分析 模式识别(心理学) 根本原因 过程控制 动态数据 产品(数学) 因果模型
作者
Dongjie Hua,Jie Dong,Kaixiang Peng,Silvio Simani,Daye Li,Jianing Hou
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-12
标识
DOI:10.1109/tcyb.2025.3634611
摘要

As large-scale industrial processes evolve toward greater complexity, the increasing interdependence of networked and dynamic process data has a critical impact on product quality, creating significant challenges for quality-related fault diagnosis. Causal graphs (CGs) are effective in modeling structural relationships among nodes in large-scale industrial processes. However, traditional causal discovery methods are limited in their ability to represent hierarchical and dynamic causal structures with spatiotemporal features. To overcome these limitations, a dynamic causal entropy (DCE)-spatiotemporal convolutional network is designed in this article. First, the proposed DCE method enables the construction of hierarchical dynamic CGs that accurately represent dynamic interactions among process variables, effectively mitigating confounding factors and enhancing interpretability. Second, a 3-D squeeze-and-excitation (SE) convolutional neural network is designed to adaptively recalibrate channel-wise information and deeply analyze the spatiotemporal characteristics embedded in the hierarchical dynamic CGs. Furthermore, a local-global quality-related fault detection approach is introduced, along with a novel causal anomaly vector that facilitates precise recognition of fault root causes across multiple hierarchical levels. Finally, the effectiveness and practical advantages of the proposed method are thoroughly demonstrated using both numerical simulations and real-world data from a hot strip mill process (HSMP), achieving a fault detection accuracy of 95.78%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Nn1关闭了Nn1文献求助
1秒前
2秒前
搜集达人应助煜琪采纳,获得10
2秒前
2秒前
2秒前
星辰大海应助万事顺意采纳,获得10
2秒前
Twonej应助风风采纳,获得30
3秒前
双丁宝贝发布了新的文献求助10
4秒前
莫舒然发布了新的文献求助10
5秒前
FashionBoy应助松松松采纳,获得50
5秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
Ava应助duoduo7采纳,获得10
8秒前
8秒前
9秒前
思源应助小小台yeah采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
刘鹏发布了新的文献求助10
9秒前
9秒前
10秒前
李爱国应助Dr.zhong采纳,获得10
10秒前
星辰大海应助害羞雨文采纳,获得10
10秒前
屈洪娇完成签到,获得积分20
10秒前
11秒前
mmmm完成签到,获得积分10
11秒前
11秒前
sunny完成签到 ,获得积分10
12秒前
Adc应助快乐篮球采纳,获得10
12秒前
12秒前
ZJR发布了新的文献求助10
13秒前
搞科研发布了新的文献求助10
13秒前
孙册册给孙册册的求助进行了留言
14秒前
充电宝应助双丁宝贝采纳,获得10
15秒前
Twonej应助wangchong采纳,获得50
15秒前
林白发布了新的文献求助10
15秒前
陈功人士完成签到,获得积分10
15秒前
siqi发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721100
求助须知:如何正确求助?哪些是违规求助? 5264145
关于积分的说明 15293316
捐赠科研通 4870344
什么是DOI,文献DOI怎么找? 2615443
邀请新用户注册赠送积分活动 1565315
关于科研通互助平台的介绍 1522338