材料科学
电解质
离子电导率
相间
化学工程
氧化物
电导率
快离子导体
环氧乙烷
解耦(概率)
金属
离子
热传导
色散(光学)
复合数
化学稳定性
离子键合
无机化学
相(物质)
三元运算
纳米复合材料
作者
Liyuan Wang,Liyuan Xie,Jiajun Ma,Y. P. Liu,Nanping Deng,Zhitao Wang,Linpo Li,Shuyan Gao
标识
DOI:10.1002/aenm.202505982
摘要
ABSTRACT The strong and excessive Li + ‐coordination with ethylene oxide (EO) chains induces an inadequate Li + conduction and poor interfacial stability in polyethylene oxide (PEO)‐based electrolytes. Herein, we introduce an “ionic tug‐of‐war” strategy to decouple Li + ‐coordination by leveraging other metal ions to compete with Li + for coordination. This design is realized by grafting Lewis‐acidic Mg 2 + sites, which possess moderate positive charge and coordination ability, onto the surface of triethoxy‐3‐(2‐imidazolin‐1‐yl)propylsilane (DI)‐bridged Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 fillers (denoted as LLZTO‐DI‐Mg). With the homogeneous dispersion of LLZTO‐DI‐Mg within PEO matrix, Mg 2+ sites readily chelate with EO and bis(trifluoromethanesulphonyl)imide (TFSI − ) anions, inducing competitive Mg 2+ ‐EO‐Li + and Mg 2+ ‐TFSI − ‐Li + coordination structures. The resulting loosened Li + ‐coordination environment enables high ionic conductivity (7.4 × 10 −4 S cm −1 ) and Li + transference number (0.63), both essential for efficient ion transport in battery systems. Moreover, the preferentially formed Mg 2+ ‐TFSI − promotes the generation of a robust solid electrolyte interphase (SEI) layer enriched with LiF/Li 3 N, thereby improving interfacial stability. When applied in LiFePO 4 ||Li and high‐voltage LiNi 0.83 Co 0.07 Mn 0.1 O 2 ||Li full cells, the customized electrolyte demonstrates superior rate capability and long‐term cycling performance. This work highlights the significant potential of “ionic tug‐of‐war” effect in regulating Li + conduction and tailoring interphase chemistry for high‐performance solid‐state composite electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI