Advancing Extracellular Vesicle Research: A Review of Systems Biology and Multiomics Perspectives

细胞外小泡 系统生物学 计算生物学 生物 胞外囊泡 分子细胞生物学 模拟生物系统 蛋白质组学 人类疾病 鉴定(生物学) 计算机科学 生物网络 微泡 数据科学 生物标志物发现 生物信息学 疾病 合成生物学 翻译生物信息学 系统医学 生物标志物 诊断生物标志物 细胞与分子生物学 小泡 代谢组学 纳米技术 细胞信号
作者
Gloria Kemunto,Samaneh Ghadami,Kristen Dellinger
出处
期刊:Proteomics [Wiley]
卷期号:: e70066-e70066
标识
DOI:10.1002/pmic.70066
摘要

ABSTRACT Extracellular vesicles (EVs) are membrane‐bound vesicles secreted by various cell types into the extracellular space and play a role in intercellular communication. Their molecular cargo varies depending on the cell of origin and its functional state. As a result, EVs serve as representatives of their parent cells and reservoirs of disease biomarkers. Their presence in diverse bodily fluids has fueled interest in their potential for biomarker discovery and signaling research. Advances in mass spectrometry, high‐throughput sequencing, and bioinformatics have expanded the molecular characterization of EVs, while emerging tools, including artificial intelligence (AI), image‐based systems biology, and curated EV repositories, are driving exploration of disease‐associated molecular signatures. Omics technologies generate extensive, multidimensional datasets that can be analyzed using bioinformatics techniques in conjunction with traditional statistical methods. Systems‐based approaches, such as network analysis, computer modeling, and AI, are particularly effective for interpreting these complex datasets. However, their application in EV studies requires a solid understanding of EV‐specific biological principles and analytical tools to ensure accuracy. By leveraging these analytical strategies, systems biology aims to unravel the intricate organization of biological processes, providing insights into how EVs interact within cells and organisms, and how they can be utilized to advance disease diagnostics, monitor disease progression, and develop novel therapeutic strategies. This review aims to elucidate the state‐of‐the‐art in EV research, integrating multiomics, modeling, and disease‐specific insights. EV‐specific data repositories and the future of EVs in systems biology will also be highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助ste11ar采纳,获得10
1秒前
欣慰人生完成签到,获得积分10
1秒前
2秒前
JinFFyy完成签到,获得积分10
2秒前
踏实的糖豆完成签到,获得积分10
3秒前
3秒前
czz完成签到,获得积分10
3秒前
快乐无极限完成签到,获得积分10
4秒前
赘婿应助背后冥王星采纳,获得10
4秒前
5秒前
DrSong发布了新的文献求助30
6秒前
T拐拐发布了新的文献求助10
6秒前
6秒前
天天快乐应助李芳采纳,获得10
6秒前
Siren发布了新的文献求助20
6秒前
林茵完成签到,获得积分10
6秒前
无限小霜完成签到,获得积分10
6秒前
安AN完成签到,获得积分10
7秒前
文光完成签到,获得积分10
7秒前
8秒前
夕沫完成签到,获得积分10
8秒前
8秒前
机智的代真完成签到,获得积分20
8秒前
大个应助李7采纳,获得10
8秒前
8秒前
FashionBoy应助李闻闻采纳,获得10
8秒前
诗图完成签到,获得积分10
8秒前
10秒前
米米发布了新的文献求助10
10秒前
李爱国应助正在消融的冰采纳,获得10
10秒前
10秒前
YYT完成签到,获得积分10
11秒前
11秒前
an完成签到,获得积分10
11秒前
深情安青应助薛冰雪采纳,获得10
11秒前
hail发布了新的文献求助10
11秒前
11秒前
赘婿应助珂珂采纳,获得10
11秒前
毛77发布了新的文献求助10
12秒前
浮游应助11di采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402696
求助须知:如何正确求助?哪些是违规求助? 4521255
关于积分的说明 14084933
捐赠科研通 4435268
什么是DOI,文献DOI怎么找? 2434625
邀请新用户注册赠送积分活动 1426781
关于科研通互助平台的介绍 1405516