Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures

医学 无线电技术 缺氧(环境) 置信区间 肿瘤缺氧 核医学 放射科 放射治疗 内科学 氧气 有机化学 化学
作者
Sebastian Sanduleanu,Arthur Jochems,Taman Upadhaya,Aniek J.G. Even,Ralph T. H. Leijenaar,Frank J. W. M. Dankers,Remy Klaassen,Henry C. Woodruff,Mathieu Hatt,Hans J.A.M. Kaanders,Olga Hamming‐Vrieze,Hanneke W.M. van Laarhoven,R. Subramiam,Shao Hui Huang,Brian O’Sullivan,Scott V. Bratman,Ludwig J. Dubois,Razvan L. Miclea,Dario Di Perri,Xavier Geets,M. Crispin Ortuzar,Aditya Apte,Joseph O. Deasy,Jung Hun Oh,Nancy Y. Lee,John L. Humm,Heiko Schöder,Dirk De Ruysscher,Frank Hoebers,Philippe Lambin
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:153: 97-105 被引量:24
标识
DOI:10.1016/j.radonc.2020.10.016
摘要

Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature.A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features.A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80).The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净白容发布了新的文献求助10
刚刚
ranqi发布了新的文献求助10
刚刚
大个应助mujin采纳,获得10
刚刚
华仔应助呜呜采纳,获得10
2秒前
2秒前
桐桐应助高贵的依白采纳,获得10
2秒前
善学以致用应助逐风采纳,获得10
3秒前
脑洞疼应助张旭采纳,获得30
3秒前
4秒前
5秒前
5秒前
珏郡发布了新的文献求助10
5秒前
xiaoyanzi发布了新的文献求助10
6秒前
紫云完成签到 ,获得积分10
6秒前
6秒前
cdercder应助科研通管家采纳,获得20
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
li关闭了li文献求助
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
MchemG应助科研通管家采纳,获得30
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
falcon发布了新的文献求助10
8秒前
WRZ发布了新的文献求助10
8秒前
dijla发布了新的文献求助10
8秒前
甜甜玫瑰发布了新的文献求助10
9秒前
喜文发布了新的文献求助10
10秒前
淡然的新烟完成签到 ,获得积分10
12秒前
13秒前
NexusExplorer应助tt采纳,获得10
13秒前
13秒前
wan完成签到,获得积分10
13秒前
斯文败类应助77777采纳,获得10
14秒前
14秒前
852应助幽默尔蓝采纳,获得10
15秒前
google完成签到,获得积分20
15秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819001
求助须知:如何正确求助?哪些是违规求助? 3362081
关于积分的说明 10415274
捐赠科研通 3080389
什么是DOI,文献DOI怎么找? 1694417
邀请新用户注册赠送积分活动 814624
科研通“疑难数据库(出版商)”最低求助积分说明 768365