Heterogeneous Network Representation Learning: A Unified Framework With Survey and Benchmark

计算机科学 水准点(测量) 嵌入 实施 代表(政治) 机器学习 人工智能 任务(项目管理) 理论计算机科学 数据挖掘 数据科学 软件工程 管理 大地测量学 政治 政治学 法学 经济 地理
作者
Carl Yang,Yuxin Xiao,Yu Zhang,Yizhou Sun,Jiawei Han
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:34 (10): 4854-4873 被引量:157
标识
DOI:10.1109/tkde.2020.3045924
摘要

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (a.k.a. embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and etc. from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings. By putting all existing HNE algorithms under a unified framework, we aim to provide a universal reference and guideline for the understanding and development of HNE algorithms. Meanwhile, by open-sourcing all data and code, we envision to serve the community with an ready-to-use benchmark platform to test and compare the performance of existing and future HNE algorithms (https://github.com/yangji9181/HNE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
4秒前
pan完成签到,获得积分10
4秒前
5秒前
7秒前
小章鱼完成签到 ,获得积分10
7秒前
HZY发布了新的文献求助10
8秒前
丘比特应助cyy采纳,获得10
15秒前
15秒前
Leung应助kun采纳,获得10
15秒前
20秒前
所所应助妮儿采纳,获得10
21秒前
25秒前
黄婷婷完成签到,获得积分10
28秒前
29秒前
小飞飞应助迷人以寒采纳,获得10
30秒前
核桃发布了新的文献求助10
33秒前
妮儿发布了新的文献求助10
33秒前
34秒前
SciGPT应助yn采纳,获得10
34秒前
38秒前
Dorisyoolee发布了新的文献求助10
43秒前
lzl008完成签到 ,获得积分10
43秒前
46秒前
46秒前
阔达的马里奥完成签到 ,获得积分10
46秒前
情怀应助无奈的萍采纳,获得10
46秒前
CipherSage应助Dorisyoolee采纳,获得10
50秒前
樱sky完成签到,获得积分10
50秒前
yn发布了新的文献求助10
51秒前
天天喝咖啡完成签到,获得积分10
53秒前
勤奋向真发布了新的文献求助10
53秒前
CNAxiaozhu7应助钱烨华采纳,获得20
56秒前
Warming关注了科研通微信公众号
58秒前
笑点低的凝阳完成签到,获得积分10
58秒前
lzl007完成签到 ,获得积分10
1分钟前
Crossing完成签到,获得积分10
1分钟前
指导灰完成签到 ,获得积分10
1分钟前
今后应助彩色的无声采纳,获得10
1分钟前
Hello应助刘佳敏采纳,获得10
1分钟前
霍师傅发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549