材料科学
钝化
光电子学
发光二极管
钙钛矿(结构)
光致发光
量子效率
量子产额
激子
图层(电子)
二极管
纳米技术
光学
荧光
化学工程
工程类
物理
量子力学
作者
Eojin Yoon,Kyung Yeon Jang,Jinwoo Park,Tae‐Woo Lee
标识
DOI:10.1002/admi.202001712
摘要
Abstract Metal halide perovskite (MHP) light‐emitting diodes (LEDs) have been widely studied and have been reached to > 20% external quantum efficiency, owing to their attractive characteristics (e.g., solution processability, tunable bandgap and extremely high color purity, high mobility). During the rapid development of perovskite light‐emitting diodes (PeLEDs), modifying the device architecture has been widely studied as well as improving the crystal quality of MHP to achieve near‐unity photoluminescence quantum yield. However, efforts in device architecture engineering have received less attention despite their significance. Here, strategies are reviewed to enhance the efficiency of PeLEDs in terms of the device engineering by interfacial charge injection/transport, exciton‐quenching blocking, and defect passivation layers for enhancing radiative electron–hole recombination. Strategies are systematically classified for each layer in PeLEDs and discussed the synergetic effect between different strategies. Perspective is also provided on future research on PeLEDs focusing on their architecture.
科研通智能强力驱动
Strongly Powered by AbleSci AI