Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites

卷积神经网络 环氧树脂 材料科学 模数 复合材料 有限元法 纤维 压力(语言学) 复合数 人工神经网络 应力场 计算机科学 结构工程 人工智能 工程类 语言学 哲学
作者
Sristi Gupta,T. Mukhopadhyay,Vinod Kushvaha
出处
期刊:Defence Technology [Elsevier]
卷期号:24: 58-82 被引量:7
标识
DOI:10.1016/j.dt.2022.09.008
摘要

The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships. Fiber-reinforced polymer composites have emerged as an integral part of materials development with tailored mechanical properties. However, the complexity and heterogeneity of such composites make it considerably more challenging to have precise quantification of properties and attain an optimal design of structures through experimental and computational approaches. In order to avoid the complex, cumbersome, and labor-intensive experimental and numerical modeling approaches, a machine learning (ML) model is proposed here such that it takes the microstructural image as input with a different range of Young's modulus of carbon fibers and neat epoxy, and obtains output as visualization of the stress component S11 (principal stress in the x-direction). For obtaining the training data of the ML model, a short carbon fiber-filled specimen under quasi-static tension is modeled based on 2D Representative Area Element (RAE) using finite element analysis. The composite is inclusive of short carbon fibers with an aspect ratio of 7.5 that are infilled in the epoxy systems at various random orientations and positions generated using the Simple Sequential Inhibition (SSI) process. The study reveals that the pix2pix deep learning Convolutional Neural Network (CNN) model is robust enough to predict the stress fields in the composite for a given arrangement of short fibers filled in epoxy over the specified range of Young's modulus with high accuracy. The CNN model achieves a correlation score of about 0.999 and L2 norm of less than 0.005 for a majority of the samples in the design spectrum, indicating excellent prediction capability. In this paper, we have focused on the stage-wise chronological development of the CNN model with optimized performance for predicting the full-field stress maps of the fiber-reinforced composite specimens. The development of such a robust and efficient algorithm would significantly reduce the amount of time and cost required to study and design new composite materials through the elimination of numerical inputs by direct microstructural images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
金金完成签到,获得积分20
刚刚
wanci应助zyd采纳,获得10
1秒前
Stefano完成签到,获得积分10
2秒前
邓_莲发布了新的文献求助10
2秒前
华仔应助lk、采纳,获得10
4秒前
5秒前
yyj发布了新的文献求助10
5秒前
6秒前
9秒前
jtj发布了新的文献求助10
9秒前
林一应助Akkir采纳,获得100
10秒前
strawberry完成签到,获得积分10
11秒前
ding应助体贴的荣轩采纳,获得10
12秒前
13秒前
benben应助Nioy采纳,获得10
15秒前
16秒前
搞怪妙菱完成签到,获得积分20
16秒前
SU发布了新的文献求助10
18秒前
lalala发布了新的文献求助10
19秒前
wangbin发布了新的文献求助10
21秒前
huifang完成签到,获得积分10
23秒前
24秒前
不止一点忙的小白完成签到 ,获得积分10
25秒前
芝麻球ii完成签到,获得积分10
26秒前
wangbin完成签到,获得积分20
28秒前
着急的小蘑菇完成签到,获得积分10
29秒前
研友_Lw4Ngn发布了新的文献求助10
29秒前
29秒前
大鹏完成签到,获得积分0
30秒前
xiaokezhang发布了新的文献求助10
30秒前
彭于晏应助Adam采纳,获得10
31秒前
32秒前
32秒前
你的文献完成签到,获得积分10
32秒前
Owen应助wangbin采纳,获得10
33秒前
SCI发布了新的文献求助10
37秒前
咕噜咕噜发布了新的文献求助30
38秒前
完美世界应助清风采纳,获得10
38秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2385479
求助须知:如何正确求助?哪些是违规求助? 2092049
关于积分的说明 5262501
捐赠科研通 1819117
什么是DOI,文献DOI怎么找? 907282
版权声明 559134
科研通“疑难数据库(出版商)”最低求助积分说明 484620