Heterogeneity in the co-occurrence of depression and anxiety among adolescents: Results of latent profile analysis

焦虑 萧条(经济学) 心理学 临床心理学 潜在类模型 多项式logistic回归 逻辑回归 精神科 医学 内科学 统计 数学 经济 宏观经济学 机器学习 计算机科学
作者
Yuelian Dai,Zheng Ya,Kesong Hu,Jingyan Chen,Shan Lu,Qi Li,Jing Xiao
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:357: 77-84 被引量:1
标识
DOI:10.1016/j.jad.2024.04.065
摘要

Depression and anxiety co-occur frequently and there is heterogeneity in the co-occurrence of such symptoms; however, few previous studies investigated the heterogeneity based on person-centered perspectives in adolescents. The primary aim of our study was to explore it using latent profile analysis (LPA), a person-centered statistical approach. The Patient Health Questionnaire-9 (PHQ-9) and General Anxiety Disorder-7 (GAD-7) were used to examine depression and anxiety symptoms in 7422 Chinese adolescents from 23 primary and secondary schools. To investigate latent profiles and assess profile validity, we employed Latent Profile Analysis (LPA), multinomial logistic regression, and analysis of variance. A three-profile model was suggested as the optimum: low (69.9 %), moderate (21.6 %), and high depression/anxiety (8.5 %). Female with higher negative cognitive bias and higher emotional regulation difficulty are more likely to be categorized in the high depression/anxiety group. Internet addiction, academic "Lying flat" and involution are significantly and positively linked with the severity of anxiety and depression. Reliance on self-reported measures may lead to response bias; the cross-sectional design limits our ability to study how symptom profiles and category membership change over time. Three latent profiles of the co-occurrence of depression and anxiety presented a parallel pattern, which serves as a poignant reminder of the imperative need to identify Chinese adolescents who may be at elevated risk for depression and/or anxiety, and promoting intervention that are meticulously tailored to address the unique symptom presentations of each individual.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初识发布了新的文献求助10
1秒前
gs发布了新的文献求助10
3秒前
5秒前
所所应助Daddybo采纳,获得10
7秒前
科研通AI2S应助郭慧泉采纳,获得10
7秒前
豆泡终结者完成签到 ,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
Miranda发布了新的文献求助10
10秒前
谨慎秋珊完成签到 ,获得积分10
10秒前
11秒前
12秒前
jenningseastera应助Raymond采纳,获得10
12秒前
海洋完成签到,获得积分10
14秒前
牙牙完成签到,获得积分10
17秒前
烟花应助buerxiaoshen采纳,获得10
17秒前
20秒前
求解限发布了新的文献求助50
21秒前
脑洞疼应助牙牙采纳,获得10
21秒前
ray发布了新的文献求助10
24秒前
SPQR完成签到,获得积分10
24秒前
27秒前
包容的海豚完成签到 ,获得积分10
28秒前
Typing发布了新的文献求助10
28秒前
SciGPT应助Miranda采纳,获得10
30秒前
慕青应助tffyhgfjhy采纳,获得10
31秒前
王南晰完成签到 ,获得积分10
31秒前
keke完成签到,获得积分10
32秒前
buerxiaoshen发布了新的文献求助10
32秒前
初识完成签到,获得积分10
34秒前
36秒前
jia完成签到 ,获得积分10
37秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401