Unleashing the power of machine learning and remote sensing for robust seasonal drought monitoring: A stacking ensemble approach

随机森林 梯度升压 计算机科学 机器学习 人工智能 蒸散量 堆积 Boosting(机器学习) 环境科学 中分辨率成像光谱仪 气候变化 决策树 遥感 数据挖掘 地质学 生态学 物理 核磁共振 海洋学 卫星 工程类 生物 航空航天工程
作者
Xinlei Xu,Fangzheng Chen,Bin Wang,Matthew Tom Harrison,Yong Chen,Ke Liu,Chenxia Zhang,Meiqin Zhang,Xueliang Zhang,Puyu Feng,Kelin Hu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:634: 131102-131102 被引量:11
标识
DOI:10.1016/j.jhydrol.2024.131102
摘要

Droughts cause significant economic losses in many regions around the world, highlighting a need to more accurately quantify implications of drought on production and water management. Remote sensing technologies and machine learning-based models offer promising solutions for timely and accurate regional drought monitoring, but the accuracy of such approaches is constrained by both the conceptual design and algorithms underpinning such approaches. We developed a machine learning stacking ensemble approach to overcome such limitations, drawing upon Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Climate Data Record (PERSIANN-CDR), Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing products, and climate zoning data to estimate 3-month scale SPEI (Standardized Precipitation Evapotranspiration Index, SPEI-3) in 9 sub-regions of China. We compared 19 individual machine learning models and used the stacking approach to select the most robust meta-model for SPEI-3 prediction. We found that CatBoost Regressor (CBR), Extra Trees Regressor (ETR), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), and Random Forest (RF) were the top individual models for predicting drought, while using CBR as the stacked meta-model achieved the best performance. The R2 values for the stacking model with CBR as the meta-model were 0.9065 and 0.8218 in the eastern and western regions, respectively. We then employed the stacking model with CBR as the meta-model to generate seasonal drought maps based on SPEI-3 across different years and seasons. Our predicted SPEI-3 was compared with drought maps generated by the GPCC and ERA5 reanalysis datasets. We found a strong correlation between them with R2 exceeding 0.8 across multiple years and seasons, indicating our machine learning stacking ensemble approach had a good performance in monitoring seasonal drought conditions. The findings of our study establish a standardized protocol for predicting droughts in the agricultural sector, enabling its widespread application irrespective of variations in terrain and climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜的跳跳糖完成签到 ,获得积分10
刚刚
JacekYu完成签到 ,获得积分10
4秒前
沐浠完成签到 ,获得积分10
6秒前
俏皮诺言完成签到,获得积分10
8秒前
Hofury完成签到 ,获得积分10
11秒前
xiaoya完成签到 ,获得积分10
13秒前
19秒前
王明新完成签到,获得积分10
20秒前
胡茶茶完成签到 ,获得积分10
24秒前
闪闪雅阳发布了新的文献求助10
26秒前
小龙完成签到,获得积分10
27秒前
28秒前
称心的鑫发布了新的文献求助10
34秒前
sddq完成签到,获得积分10
35秒前
Zp完成签到,获得积分10
36秒前
songjin111111完成签到,获得积分10
38秒前
科研狗完成签到 ,获得积分0
40秒前
dent强完成签到,获得积分10
40秒前
QQ完成签到 ,获得积分10
42秒前
wqts完成签到,获得积分10
45秒前
Arthur完成签到 ,获得积分10
45秒前
繁荣的凝荷完成签到 ,获得积分10
49秒前
j1kxm完成签到,获得积分10
54秒前
顾矜应助科研通管家采纳,获得10
1分钟前
libiqing77完成签到,获得积分10
1分钟前
花阳年华完成签到 ,获得积分10
1分钟前
西溪完成签到,获得积分10
1分钟前
1分钟前
舒适乐安发布了新的文献求助10
1分钟前
煮饭吃Zz完成签到 ,获得积分10
1分钟前
车剑锋完成签到,获得积分10
1分钟前
1分钟前
banbieshenlu完成签到,获得积分10
1分钟前
1分钟前
lhnsisi发布了新的文献求助10
1分钟前
稳重完成签到 ,获得积分10
1分钟前
小菡菡发布了新的文献求助10
1分钟前
ooa4321完成签到,获得积分10
1分钟前
溜溜很优秀完成签到,获得积分10
1分钟前
zeannezg完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779247
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220049
捐赠科研通 3039964
什么是DOI,文献DOI怎么找? 1668526
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503