Prediction of Prognosis and Immunological Features in Hepatocellular Carcinoma Based on Non‐Apoptotic Regulatory Cell Death Genes

肝细胞癌 细胞凋亡 基因 程序性细胞死亡 癌症研究 肝癌 生物 计算生物学 内科学 肿瘤科 医学 遗传学
作者
Ye‐Feng Yao,Songjie Wu,Yilin Leiyang,Mengying Li
出处
期刊:Asia-pacific Journal of Clinical Oncology [Wiley]
卷期号:: e14204-e14204
标识
DOI:10.1111/ajco.14204
摘要

ABSTRACT Background Hepatocellular carcinoma (HCC) is the most common liver cancer. Exploring non‐apoptotic regulated cell death (RCD) offers a strategy to overcome drug resistance. This study investigates a risk model based on non‐apoptotic RCD‐related genes to predict clinical outcomes and guide immunotherapy. Methods We identified genes associated with non‐apoptotic RCD in HCC through weighted gene co‐expression network analysis (WGCNA) and differential analysis. We then employed non‐negative matrix factorization (NMF) clustering to categorize HCC into molecular subtypes related to non‐apoptotic RCD and identified differentially expressed genes (DEGs) among these subtypes. We developed a prognostic model utilizing Cox regression and LASSO analysis, stratifying patients into specific risk groups and validating the model's prognostic significance. We subsequently analyzed immune functions and tumor mutation burden (TMB). Finally, we identified potential drugs and evaluated drug sensitivity specific to HCC. Results We identified four non‐apoptotic RCD genes and classified patients into three subtypes. We observed significant differences in immune characteristics and prognostic outcomes among these groups. Six DEGs emerged as key indicators for risk assessment, leading to a prognostic model. High‐risk patients face poorer survival rates and increased mortality. Independent prognostic analyses confirm that these models can effectively predict patient outcomes. Notably, in high‐risk patients, immune‐related functions appear suppressed, facilitating tumor immune evasion. Conclusion We developed a risk model focused on non‐apoptotic RCD genes. This model accurately predicts the prognosis for HCC patients. It may also offer new insights for clinical decisions and immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的冰旋完成签到,获得积分10
刚刚
1秒前
烟花应助无言务实采纳,获得30
1秒前
越过山丘完成签到 ,获得积分10
2秒前
朴素采文完成签到,获得积分10
3秒前
美满的萝完成签到 ,获得积分10
4秒前
6秒前
所所应助heyong采纳,获得10
6秒前
陈末发布了新的文献求助10
7秒前
请输入昵称完成签到,获得积分10
9秒前
Zafar完成签到,获得积分20
9秒前
10秒前
10秒前
明理宛秋完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
科研通AI6应助michael采纳,获得10
12秒前
巴拉巴拉完成签到,获得积分10
14秒前
ZORROR发布了新的文献求助10
16秒前
16秒前
学术小鱼完成签到,获得积分10
16秒前
江望雪完成签到,获得积分10
17秒前
浮游应助zzzz采纳,获得10
17秒前
17秒前
lin完成签到,获得积分10
18秒前
18秒前
小离应助欢呼亦绿采纳,获得10
19秒前
清江鱼完成签到,获得积分10
19秒前
21秒前
YOLO发布了新的文献求助10
21秒前
orixero应助ven采纳,获得10
22秒前
栾小鱼发布了新的文献求助10
22秒前
云蓝完成签到 ,获得积分10
22秒前
科研通AI6应助明芬采纳,获得10
22秒前
西子完成签到,获得积分10
24秒前
25秒前
傲娇如天完成签到,获得积分10
25秒前
25秒前
Zhao发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284517
求助须知:如何正确求助?哪些是违规求助? 4437901
关于积分的说明 13815526
捐赠科研通 4318950
什么是DOI,文献DOI怎么找? 2370800
邀请新用户注册赠送积分活动 1366092
关于科研通互助平台的介绍 1329624