Different MRI-based radiomics machine learning models to predict CD3+ tumor-infiltrating lymphocytes in rectal cancer

无线电技术 医学 结直肠癌 肿瘤浸润淋巴细胞 癌症 肿瘤科 人工智能 内科学 计算机科学 放射科 免疫疗法
作者
W. F. Mader,Chuanling Hou,Minxia Yang,Yuguo Wei,Jiwei Mao,Le Luo Guan,Zhenhua Zhao
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fonc.2025.1509207
摘要

This study aimed to develop and evaluate multiple machine learning models utilizing contrast-enhanced T1-weighted imaging (T1-CE) to differentiate between low-/high-infiltration of total T lymphocytes (CD3) in patients with rectal cancer. We retrospectively selected 157 patients (103 men, 54 women) with pathologically confirmed rectal cancer diagnosed between March 2015 and October 2019. The cohort was randomly divided into a training dataset (n=109) and a test dataset (n=48) for subsequent analysis. Seven radiomic features were selected to generate three models: logistic regression (LR), random forest (RF), and support vector machine (SVM). The diagnostic performance of the three models was compared using the DeLong test. Additionally, Kaplan-Meier analysis was employed to assess disease-free survival (DFS) in patients with high and low CD3+ tumor-infiltrating lymphocyte (TIL) density. The three radiomics models performed well in predicting the infiltration of CD3+ TILS, with area under the curve (AUC) values of 0.871, 0.982, and 0.913, respectively, in the training set for the LR, RF, and SVM models. In the validation set, the corresponding AUC values were 0.869, 0.794, and 0.837, respectively. Among the radiomics models, the LR model exhibited superior diagnostic performance and robustness. The merged model, which integrated radiomics features from the SVM model and clinical features from the clinical model, outperformed the individual radiomics models, with AUCs of 0.8932 and 0.8829 in the training and test cohorts, respectively. Additionally, a lower expression level of CD3+ TILs in the cohort was independently correlated with DFS (P = 0.0041). The combined model demonstrated a better discriminatory ability in assessing the abundance of CD3+ TILs in rectal cancer. Furthermore, the expression of CD3+ TILs was significantly correlated with DFS, highlighting its potential prognostic value. This study is the first attempt to compare the predictive TILs performance of three machine learning models, LR, RF, and SVM, based on the combination of radiomics and immunohistochemistry. The MRI-based combined model, composed of radiomics features from the SVM model and clinical features from the clinical model, exhibited better discriminatory capability for the expression of CD3+ TILs in rectal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大白发布了新的文献求助10
1秒前
ywang完成签到,获得积分20
1秒前
1秒前
1秒前
Gao发布了新的文献求助10
1秒前
科研通AI5应助W888采纳,获得10
1秒前
超级王国发布了新的文献求助10
2秒前
2秒前
3秒前
li完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助50
3秒前
4秒前
亚尔发布了新的文献求助10
4秒前
4秒前
CIOOICO1发布了新的文献求助10
4秒前
4秒前
852应助搞怪不言采纳,获得10
5秒前
imp发布了新的文献求助100
5秒前
Aliangkou完成签到,获得积分10
5秒前
5秒前
5秒前
曲秋白完成签到 ,获得积分10
5秒前
Orange应助li采纳,获得10
5秒前
爱学习的猫完成签到,获得积分10
6秒前
完美世界应助海风吹采纳,获得10
6秒前
6秒前
scifff完成签到,获得积分10
6秒前
Battery-Li完成签到,获得积分10
7秒前
sanxian发布了新的文献求助10
8秒前
beyond发布了新的文献求助10
8秒前
8秒前
9秒前
无极微光应助QP采纳,获得20
9秒前
9秒前
上官若男应助白雪阁采纳,获得10
9秒前
果实发布了新的文献求助10
9秒前
10秒前
追梦完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084648
求助须知:如何正确求助?哪些是违规求助? 4301274
关于积分的说明 13402455
捐赠科研通 4125720
什么是DOI,文献DOI怎么找? 2259524
邀请新用户注册赠送积分活动 1263746
关于科研通互助平台的介绍 1197909